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▪ Introduction to Voice Activity Detection

(VAD)

▪ Current SNN training approaches

▪ Training SNN with backpropagation

▪ Pushing the limits of SNNs with temporal 

coding and lottery tickets

▪ Results

▪ Conclusions 
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Main message
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▪ Neuromorphic microchips are a solution to Voice Activity Detection in 

battery powered devices

▪ Spiking network training algorithms should exploit as possible temporal 

dynamics to achieve lower power consumption



Voice Activity Detection (VAD)
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Signal

Preprocessing

Keyword Spotting

Speech Recognition

Communication

Channel

Javier Ramirez et al “Voice activity detection. fundamentals and speech recognition system robustness” 2007



Voice Activity Detection (VAD)
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Signal

Preprocessing

VAD

Keyword Spotting

Speech Recognition

Communication

Channel

VAD as a gating system: limit further computational processing and 

power consumption

Javier Ramirez et al “Voice activity detection. fundamentals and speech recognition system robustness” 2007



Rate coding vs. temporal coding
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▪ Most performing training technique: conversion from trained artificial 

model to spiking model

• Translation of analog neuron activations into spiking rates

• Latency – Accuracy tradeoff

▪ We want to fully exploit the time dimension to encode information

• Less events to convey the same amount of information

• Exploit novel computational properties

Pfeiffer, Michael, and Thomas Pfeil. "Deep learning with spiking neurons: opportunities and challenges." Frontiers in neuroscience 12 (2018): 774.



SNN recast as recurrent Network
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𝑆𝑗(𝑡)

Neftci, Emre O et al. ‘Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks’.

Bellec, Guillaume, et al. ‘Long short-term memory and learning-to-learn in networks of spiking neurons’.
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Train with BackPropagation

Through Time (BPTT) like a 

recurrent network 



Surrogate gradients and loss function
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𝑆𝑖(𝑡) = Θ(𝑉𝑖 𝑡 − 𝜃)

Neftci, Emre O et al. ‘Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks’.

Bellec, Guillaume, et al. ‘Long short-term memory and learning-to-learn in networks of spiking neurons’.
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Problem: differentiating through the 

Heaviside function cancels all the 

gradients

Solution: use a surrogate function 

for the backward pass

Forward pass

Backward pass

ℒ = CE(max 𝑉𝑠 −max 𝑉𝑛 )



Spike temporal encoding of features
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64 ms audio 

frame 

128 log Mel filterbank

coefficients

Normalization, discretization and 

Time To First Spike (TTFS)

Mel  

Coefficient #

Input

Neurons

Time

One spike per input 

neuron conveys the 

Mel coefficient value

Relative timing between 

spikes is the only 

information available to 

the network



Results on QUT-NOISE-TIMIT
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𝐷𝐶𝐹 = 0.25 𝐹𝐴𝑅 + 0.75 𝑀𝑅

𝐹𝐴𝑅 : false alarm rate

𝑀𝑅 : miss rate

𝐻𝑇𝐸𝑅 = 0.5 𝐹𝐴𝑅 + 0.5 𝑀𝑅

DCF (Detection Cost Function)

Previous ICASSP work: 

Neurogram (ANN based)

Comparisons:

SNN trained on entire dataset

HTER (Half Total Error Rate)

[6-8]: Machine Learning 

approaches, trained on specific 

noise level

[2-5]: Standard signal processing 

solutions 



Lottery Ticket Hypothesis and pruning
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▪ Lottery Ticket Hypothesis: within the model there exist subnetworks 

which can achieve the same performance as the full model

• Lottery ticket subnetworks are defined by the random weight initialization 

process

• Ability to not lose performance at 15% of the original connectivity 

Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." arXiv preprint arXiv:1803.03635 (2018).



ROC curve and energy estimation
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▪ Low average spiking rate

▪ Estimated power consumption in the order of tens of uW (computed from TrueNorth power 

consumption profile and adapted to our network size and activity)

▪ Pruning effective in reducing network average activity and Synaptic Operations

▪ Low power VAD implementations reach up to less than 1uW but at the 

performance cost of performance: (84% hit rate and 72% correct rejection @5dB against our SNN 

which respectively has 97% and 84%)

Paul Merolla et al., “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

Minchang Cho et al., “17.2 a 142nw voice and acoustic activity detection chip for mm-scale sensor nodes using time interleaved mixer-based frequency scanning,”



Conclusions
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▪ We proposed a VAD spiking model that competes with state of the art, 

with a good tradeoff between power consumption and performance. 

SNN VAD solution from * scores at 26mW of power consumption

▪ We pushed temporal coding to the limit and showed that spiking 

networks can work with complex real valued features coded in the 

temporal domain

▪ Addressed neuromorphic chips connectivity problems with pruning 

techniques

* Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, et al., “Convolutional networks for fast energy-efficient neuromorphic computing,” Proc. Nat. Acad. 

Sci. USA, vol. 113, no. 41, pp. 11441–11446, 2016.



Limitations and Thought for the future
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▪ Training process is computationally very expensive due to the amount 

of timesteps to backpropagate

▪ Translation into neuromorphic implementations difficult due to different 

specifications of each manufacturer

▪ Use of more elaborate spike encodings and loss functions 

▪ Exploit recurrent connections 

▪ Test on harder tasks such as keyword spotting



▪ Slides [3]: icons made by Prosymbols from www.flaticon.com

▪ Slides [4-5]: icons made by Kiranshastry, Freepik, prettycons from www.flaticon.com
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Extra slides that did not fit the 15 minutes
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▪ Spiking neurons have time dynamics

▪ Binary activation function called spike

▪ Asynchronous, event driven processing

▪ Leaky integrator dynamics

▪ More biologically realistic than artificial

networks 

Spiking Neural Networks (SNNs)
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Input spikes

Output spikes

Voltage trace



▪ VAD is an always on system

▪ By design it needs to be power efficient and have a good performance

▪ Embedded neuromorphic microchips are a low power and efficient 

solution

Why spiking neurons for VAD in battery powered
devices?
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Spike pattern examples
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Network models and classification
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Network Architecture 𝝉𝑰 𝝉𝑽 Classification

SNN h1 128 – 200 – 2  5 10 Frame by frame. Median smoothing on 

11 predictions

SNN h2 128 – 100 – 15 - 2 5 10 - 300 5 successive frames, classification on 

the last one. Median smoothing on 11 

predictions


