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RACCUMULATED VERICLE LOADS ON BRIDGES

= may destroy gradually more than 700,000 road bridges in Japan.

= must be collected automatically for structural health monitoring.
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PAVEMENT WEIGH-IN-MCTION (P-WIM)

= is installed on the pavement surface somewhere in the road network.

= estimates axle loads and collect evidence without stopping vehicles.

Installation

* is too expensive,
Lo *° requires pavement work.

\-

Maintenance

» break down frequently,
» bridge must be closed.




BRIDGE WEIGH-IN-MOTION (B-WIM)

= exploits bridge components, e.g., main girders, as weighing scales.

= Peak values of the strain responses contain axle load information:
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COMPLEMENTARITY: P-WIM AND B-WIM

= to capture overloaded vehicles making a detour to avoid P-WIMs,

= so that no vehicles running in the road network can break the law:
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2K high accuracy,
* Serve as supervisors.
J
N

B-WIMs

1| ¢ are inexpensive,
e Improve accuracy.




& CONVENTIONAL B-WIM



B-WIM: KERNEL-FTTTING APPROACH

= estimates axle loads by fitting a unit response to the strain signal:

= The unit response is called ‘influence line’, unique to each bridge.
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B-WIM: AREA-BASED APPROACH

= kernel fitting requires axle positions; sometimes difficult to obtain.

= Gross weight W is calculatable from product of area A and speed v:

N s(t): raw strain sequence in time domain,
— E ’LUnZ(Ut — ln), 1(x): influence line, N: number of axles,

1.: n-th axle position, w,: n-th axle load.

A:/_ t)dt = an/ (vt — 1,,) W/ i(x — 1)

constant value

= Area-based approach is easier and widely applied to many bridges.
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DIFFICULTY OF STRAIN MEASUREMENT

= B-WIM utilizes multiple strain sensors for accurate load estimation:

= It takes time and effort to install many strain sensors on the bridge.
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PARAMETER SENSITIVITY OF INFLUENCE LINE

= may degrade the accuracy of the axle-load estimation via B-WIM.

= B-WIM must consider accurate vehicle movement on the bridge:

. " )
Running positions
* change kernel shape,
* is frequently ignored.
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Acceleration

* changes kernel width,
* is difficult to measure.




@ PREVIOUS WORK IN 2019



PREVIOUS WORK: DEEP-SENSING APPROACH

= was proposed as a single-sensor vehicle detector for B-WIM in 2019.

= detected vehicles and their properties using a single strain sensor.
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CONCEPT: TRAINING B-WIMS USING P-WIMS

= P-WIMs provide B-WIMs with vehicle IDs with known axle loads.

= B-WIMs learn influence lines by using the axle load information.
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| o high accuracy,
* Serve as supervisors.
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| » are inexpensive,
e Improve accuracy.




CONCEPT: TRAINING B-WIMS USING P-WIMS

-
P-WIMs

» detect heavy vehicles,

o extract features from video data,

« for vehicle reidentification (Re-ID).
\_

4 )
B-WIMs

 retrieve load data by vehicle Re-ID,
 learn responses to known vehicles,
 predict loads for unknown vehicles.
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PROPOSAL: FULLY-NEURAL B-WIM

= CNN as a vehicle detector and load estimator in a multi-task fashion:
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NEURAL NETWORK ARCHITECTURE

= Residual CNN; 1 convolution, 8 plain residual blocks, 3 linear layers:
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b PREDICTION TASKS
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&) EXPERIMENTAL RESULTS



EXPERIMENTAL SETUP

= 11 strain sensors, 2 cameras on a steel bridge in an expressway:

= We retrieved 5,923 heavy vehicles with known axle loads by Re-ID.

strain meter
vaccelerometer

= Fully-neural BWIM used a single sensor installed beneath the deck.

= Area-based BWIM used all sensors at decks, girders, and v-stiffeners.




EXPERIMENTAL SETUP: AREA-BASED B-WIM

= Our special implementation estimated axle loads via 3 linear layers:
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FULLY-NEURAL B-WIM V> AREA-BASED B-WIM
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TASKS VS CAMERA-ASSISTED TASKG
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SUMMARY

—[ Additional features from cameras }

» were effective to improve axle-load accuracy.

—[ vs Area-based BWIM }

* equivalent although proposal utilized only a single sensor.

—[ Future work }

« combine the 11 sensors on decks, girders, and v-stiffeners.
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