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Background

e Significant advances in audio and speech synthesis using Generative
Models: WaveNet, SampleRNN, WaveRNN

* Successfully applied to speech coding ([11,[2],[3],[4])

« alow-bitrate description h is used to condition an autoregressive model: p ,:q (X|h)

 Application to audio coding an open problem

[1] WaveNet based low rate speech coding (Kleijn et al, 2018)

[2] High-quality speech coding with SampleRNN (Klejsa et al, 2019)

[3] A Real-Time Wideband Neural Vocoder at 1.6kb/s Using LPCNet (Valin et al, 2019)
[4] Low Bit-rate Speech Coding with VQ-VAE and WaveNet (Garbacea et al, 2019)
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Motivation and ldea

 Generalize to additional signal categories
 What should the conditioning be?
 Waveforms!

S0 the conditioning is general, but that does not mean we can mode/all
audio out there

OOOOOOOOOOOOOOOOOOOOOOOOOOO



System Diagram
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Waveform Coding

A

> lossy reconstruction

What does a classic waveform coder do?

- Quantizes to provide representation at finite bitrate (e.g. VQ, transform and scalar
quantizes)

- Shapes quantization error in a perceptually optimal way (e.g. weighted squared error)
- Exploits statistical dependencies in the signal (e.g., prediction, transform, VQ)

How does it reconstruct the signal?
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Source Coding with a Generative Model

e v MV‘NM‘IWWMMM
finite bitrate, same c:k

reconstruction by random sampling
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Theoretical Analysis

Paper includes theoretical analysis resulting in two predictions:

1. Derivation that an NLL-optimal model has

~ ) . Legend:
E{HX — XH")} = 23{ HX - /[(X_)H“) } )f original signal
X reconstruction by sampling from generative model

The generative scheme incurs a 3dB penalty vs reconstruction with the mean

2. The noise shaping properties of the waveform coder will be inherited
by the generative model
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Conditional SampleRNN

Similar structure as in [2]

But conditioning is waveform, envelope

Frame sizes tuned to signal category

Architectural enhancements:

« Two-frame lookahead using 3x1 conv
« Time-aligned coded samples provided to MLP

— Referred to as /ocal context

[2] High-quality speech coding with SampleRNN (Klejsa et al, 2019)

MLP Tier 1
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MDCT-based Waveform Coder

- bitstream

IMDCT |-

Fig. 2. Diagram of the waveform coder providing conditioning.

MDCT with a stride of 320 samples (20 ms frames)
Spectral envelope ¢ is computed across non-uniform, non-overlapping bands
SNR allocated proportionally to square root of spectral envelope

Transmits quantized flattened MDCT coefficients, spectral envelope i,,,, and
bit allocation parameter i,sfset
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Experiment 1:

Piano _ _
Listening Test

Dataset: Maestro (waveforms only)
# Hidden ref.

« ~200 hours of virtuosic classical piano
¢LP 3.5kHz

SampleRNN configuration:

¥ Opus 16

e frame sizes: 8, 8, 64, 320 (samples)
AAAC 16

 1logistic component

4 Waveform 16

« No local context TRNN 1e




Experiment 2:
Speech Listening Test

Dataset: WS)O ——————————F——F—F # Hidden ref.

* ~70 hours, 16 kHz, multiple B O | O A O | B 1 R
Sped kers 7 v Waveform 16

SampleRNN configuration: - AAMRWB
 frame sizes: 2, 2,16, 160 (samples)

10 logistic components

e With local context

OOOOOOOOOOOOOOOOOOOOOOOOOOO
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Objective Analysis

Low Rate 16 kb/s High Rate 48 kb/s

 Noise shaping of waveform codec is preserved
At high rates, 3dB gap as predicted by theory

e At low rates, iNn mid frequenciesl Samp|eRNN has lower error © 2020 DOLBY LABORATORIES, INC.



Objective analysis (2)

+ Histograms for low and high In-band SNR histogram

rate case centered around -3dB i X at 16 kb/s
. Mean {X]}
* Forlow-rate case, positively R at 16 kb/s

skewed - = = X at 48 kb/s

* Test theory by estimating HJ(X)

by averaging 10 realizations

., SampleRNN
* Indeed, 3dB gap closed and SNR 5 / 16 kb/s

improvement over baseline

15 -10 5 510
SNR improvement (X over X) [dB
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Demo

Piano and speech samples can be found here:

https://sigport.org/documents/source-coding-audio-signals-generative-model



https://sigport.org/documents/source-coding-audio-signals-generative-model

Summary

A general set-up
Combines advantages of waveform and parametric coding
Operation can be described and predicted analytically

Generalization to general audio is an open problem

OOOOOOOOOOOOOOOOOOOOOOOOOOO



