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Getting Started On A New ML Application

● Goal: Collect N examples for each of K classes
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Case #1: Have Unlabeled Data

● Common Strategy: Randomly 
sample examples for rating

● Problem: biased class 
distribution and abundance of 
out-of-set classes

Case #2: No Unlabeled Data

● Common Strategy: Collect 
artificially prompted examples

● Problem: not fully 
representative of data in 
deployment setting



Inspiration from Infant/Child Cognitive Learning
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● Humans enter the world with no ability to:
○ Track and recognize objects
○ Recognize speech and environmental sounds

● Abilities only emerge throughout first year after several months of largely 
unsupervised exposure to natural stimuli 

● Once two-way communication is established:
○ Children know what they don’t know and ask for labels for novel classes
○ However: they don’t need a label for every instance



Coincidence, Categorization, and Consolidation

Goal: Go from unlabeled dataset to semantic classifier similar to how 
children acquire cognitive skills:

1. Coincidence: observe which stimuli do and don’t coincide to learn a semantic 
representation
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Coincidence, Categorization, and Consolidation

Goal: Go from unlabeled dataset to semantic classifier similar to how 
children acquire cognitive skills:

2. Categorization: Apply cluster-based category discovery methods to representation and 
reinforce with clustering loss 
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Coincidence, Categorization, and Consolidation

Goal: Go from unlabeled dataset to semantic classifier similar to how 
children acquire cognitive skills:

3. Consolidation: Solicit semantic label for each cluster and train an additional classifier layer.

P 6

? “siren”



Plus: Do It With a Single Network
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● Training data: 
○ (audio, audio) pairs 
○ (audio, image) pairs
○ either nearby in time or not

● Result: 
○ Audio and image embeddings
○ Clustering network
○ Semantic classifier Audio 
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Curriculum Stage #1:  AV Coincidence Prediction
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● Baseline: AV Correspondence
○ Predict whether AV frames overlap
○ “Look, Listen, and Learn” (2017)

● We generalize to AV Coincidence
○ Predict whether AV frames temporally proximal (< 

ΔT)

● Why? 
○ Do not need to see source making sound
○ Allows unification with audio-only coincidence 

prediction 

● Other changes: 
○ VGG → ResNet-50
○ Random negatives → all-pairs batch construction
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Curriculum Stage #2:  AA + AV Coincidence Prediction
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● Like AV Coincidence prediction, but with 
two audio inputs and dedicated 
prediction network

● Conceptually equivalent to our temporal 
proximity triplet embedding technique 
from [Jansen et al., ICASSP 2018]
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Curriculum Stage #3:  AV + AA + Entropy-Based Clustering
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● Entropy-based loss function and 
optimization with SGD:

● Easily scales to 1M clusters and all in 
TensorFlow

● Out-of-sample extension is just regular 
forward pass
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Curriculum Stage #4: Weakly-Supervised Classification
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● Solicit label for one random example per 
cluster

● Propagate label to unlabeled examples in 
each cluster

● Add classifier network to audio 
embedding

● Apply standard cross-entropy 
classification loss using weak labels
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AudioSet Benchmark (g.co/audioset)

● AudioSet: 2M YouTube training segments, 527 classes, prior imbalance up to 10,000:1

● Embedding Models: ResNet-50 → 128-dimensional embedding

● Topline Representation: fully-supervised semantic embedding (trained with triplet loss)

● Baseline Representation: input log mel spectrogram features
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http://g.co/audioset


Eval #1: Query-By-Example

● Eval: Rank same/different class example pairs by cosine distance
● Measures: Intrinsic semantic quality of representation
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78% recovery

Unsupervised 
representation 
recovers 78% of the 
fully supervised gap!

Fully Unsupervised



Eval #2: Shallow Classifier

● Eval: Shallow fully-connected (FC1x512) classifier holding representation fixed
● Measures: Representation support of downstream classification tasks
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99% recovery

Unsupervised 
representation 
recovers 99% of the 
fully-supervised gap!

Fully Unsupervised



Eval #3: Unsupervised Active Learning

1. Cluster dataset using unsupervised semantic representation
2. Label N biggest clusters by rating a random example from each
3. Train classifier with noisy cluster-based labels 
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Unsupervised active 
learning reduces 
label requirement by 
more than 10X 



Conclusions

● In-domain unsupervised audio embedding reaches supervised 
performance

● Unsupervised active learning gives 10X reduction in label requirements

● Lessons for audio ML and beyond:
○ Collect unlabeled data when it is free/cheap
○ Collect second modality when you can
○ Cluster-based sampling > random sampling (given good representation)
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