Phoneme Boundary Detection using Learnable Segmental Features

Felix Kreuk, Yaniv Sheena, Joseph Keshet, Yossi Adi

ICASSP 2020

Introduction

- Phoneme Boundary Detection or Phoneme Segmentation plays an essential first step for a variety of speech processing applications (Automatic Speech Recognition, Speech Diarization, etc)
- Supervision Types:

- Unsupervised -- Audio only
- Supervised -- Audio +
 - Phoneme boundaries and presumed phonemes -- Forced Alignment

Phoneme boundaries alone -- Text-Independent Phoneme Segmentation

Example

Introduction

- We suggest learning **segmental representation** for both **phoneme boundaries** and **phoneme segments** to detect phoneme boundaries accurately
- We do this by jointly optimizing a **Recurrent Neural Network (RNN)** with **structured loss parameters**
- We evaluate our approach using TIMIT and Buckeye datasets. The proposed method reaches state-of-the-art performance
- We additionally experiment with leveraging phoneme information as an additional supervision and show this to be beneficial for performance and convergence speed
- Finally, we demonstrate that such phonetic supervision does not make the proposed model language specific

Related Work

- Traditionally, in the unsupervised setting, signal processing techniques were used to find spectral changes in the singal, such changes are candidates for a phoneme boundary location [Estevan et. al 2007, Rasanen et. al 2011, Hoang and Wang 2015]
- In the supervised setting, the common approach is the Forced Alignment setup.
 Models that follow this approach involve with HMM and Structured Prediction algorithms [Keshet et. al 2005, McAuliffe et. al 2017]
- In the text-independent setting, most previous work consider the task of segmentation as a binary classification problem (one label for boundaries, one for the rest) [King and Hasegawa-Johnson 2013, Franke et. al 2016]

- We denote by $\bar{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$ a speech utterance represented by acoustic features
- Each utterance is associated with a timing sequence denoted by $\bar{y} = (y_1, \dots, y_k)$, where k is the number of segments

- We denote by $\bar{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$ a speech utterance represented by acoustic features
- Each utterance is associated with a timing sequence denoted by $\bar{y} = (y_1, \dots, y_k)$, where k is the number of segments
- Consider the following prediction rule:

$$ar{\mathbf{y}}_{m{w}}'(ar{\mathbf{x}}) = rgmax_{ar{\mathbf{y}}\in\mathcal{Y}^*} \ m{w}^{ op} m{\phi}(ar{\mathbf{x}},ar{\mathbf{y}})$$

Where $w \in \mathbb{R}^d$ and ϕ is a mapping function from the set of input objects to a real vector in \mathbb{R}^d

• We assume the score for a segmentation can be decomposed as a sum of segmental scores:

$$\bar{\mathbf{y}}'_{\boldsymbol{w}}(\bar{\mathbf{x}}) = \operatorname*{argmax}_{\bar{\mathbf{y}}\in\mathcal{Y}^*} \ \boldsymbol{w}^{\top}\boldsymbol{\phi}(\bar{\mathbf{x}},\bar{\mathbf{y}}) = \sum_{i=1}^k \boldsymbol{\phi}'(\bar{\mathbf{x}},y_i)$$

 We assume the score for a segmentation can be decomposed as a sum of segmental scores:

$$\bar{\mathbf{y}}'_{\boldsymbol{w}}(\bar{\mathbf{x}}) = \operatorname*{argmax}_{\bar{\mathbf{y}}\in\mathcal{Y}^*} \ \boldsymbol{w}^{\top}\boldsymbol{\phi}(\bar{\mathbf{x}},\bar{\mathbf{y}}) = \sum_{i=1}^k \boldsymbol{\phi}'(\bar{\mathbf{x}},y_i)$$

Notice, such decomposition assumes conditional independence between boundaries

 We assume the score for a segmentation can be decomposed as a sum of segmental scores:

$$\bar{\mathbf{y}}'_{\boldsymbol{w}}(\bar{\mathbf{x}}) = \operatorname*{argmax}_{\bar{\mathbf{y}} \in \mathcal{Y}^*} \ \boldsymbol{w}^{\top} \boldsymbol{\phi}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \sum_{i=1}^k \boldsymbol{\phi}'(\bar{\mathbf{x}}, y_i)$$

- Notice, such decomposition assumes conditional independence between boundaries
- Practically, information about the previous boundary can provide insight about the next one:

$$= \underset{\bar{\mathbf{y}}\in\mathcal{Y}^*}{\operatorname{argmax}} \boldsymbol{w}^{\top} \Big(\sum_{i=1}^k \boldsymbol{\phi}'_u(\bar{\mathbf{x}}, y_i) + \sum_{j=1}^{k-1} \boldsymbol{\phi}'_{bi}(\bar{\mathbf{x}}, y_j, y_{j+1}) \Big)$$

• During training, we optimize the hinge loss function as follows:

$$\ell(\boldsymbol{w}, \bar{\mathbf{x}}, \bar{\mathbf{y}}) = \max_{\bar{\mathbf{y}}' \in \mathcal{Y}^*} \left[1 - \boldsymbol{w}^\top \boldsymbol{\phi}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) + \boldsymbol{w}^\top \boldsymbol{\phi}(\bar{\mathbf{x}}, \bar{\mathbf{y}}'_{\boldsymbol{w}}) \right]$$

Prediction rule:

$$ar{\mathbf{y}}_{m{w}}'(ar{\mathbf{x}}) = \operatorname*{argmax}_{ar{\mathbf{y}}\in\mathcal{Y}^*} \ m{w}^{ op} \phi(ar{\mathbf{x}}, ar{\mathbf{y}})$$

Loss function:

$$\ell(\boldsymbol{w}, \bar{\mathbf{x}}, \bar{\mathbf{y}}) = \max_{\bar{\mathbf{y}}' \in \mathcal{Y}^*} \left[1 - \boldsymbol{w}^\top \boldsymbol{\phi}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) + \boldsymbol{w}^\top \boldsymbol{\phi}(\bar{\mathbf{x}}, \bar{\mathbf{y}}'_{\boldsymbol{w}}) \right]$$

Results: Performance

Table 1. Comparison of phoneme segmentation models. Precision (P) and recall (R) are calculated with tolerance value of 20 ms

	Model	Р	R	F1	R-val
TIMIT	King <i>et al</i> .[22]	87.0	84.8	85.9	87.8
	Franke et al.[23]	91.1	88.1	89.6	90.8
	SegFeat	94.03	90.46	92.22	92.79
keye	Franke <i>et al</i> .[23]	87.8	83.3	85.5	87.17
Buc	SegFeat	85.4	89.12	87.23	88.76

Loss	P	R	F1	R-val
BIN	91.1	88.1	89.6	90.8

Loss	P	R	F1	R-val
Bin	91.1	88.1	89.6	90.8
SegFeat	94.03	90.46	92.22	92.79

Loss	P	R	F1	R-val
BIN	91.1	88.1	89.6	90.8
SegFeat SegFeat +Phn	94.03 92.98	90.46 92.33	92.22 92.66	92.79 93.69

Loss	P	R	F1	R-val
Bin	91.1	88.1	89.6	90.8
BIN + PHN	96.6	85.0	90.04	89.33
SegFeat	94.03	90.46	92.22	92.79
SegFeat +Phn	92.98	92.33	92.66	93.69
SegFeat +Phn +Bin	92.67	93.03	92.85	93.91

Table 4. An ablation study on the effect of the PHN loss onHebrew language.

Model	P	R	F1	R-val
SEGFEAT w/o Phn Loss	83.58	79.2	81.24	83.67
SegFeat w Phn Loss	83.11	81.66	82.38	84.92

Fig. 3. Example of segmentation result on an Hebrew utterance using an English trained model.

Results: Comparison to Forced Alignment

Table 3. Comparison of the proposed model against forced-alignment algorithms.

Model	P	R	F1	R-val
McAuliffe (unsup.) [21]	83.9	81.6	82.7	85.16
Keshet (sup.) [20]	90	82.2	85.9	79.51
SEGFEAT	94.03	90.46	92.22	92.79

Summary

- Moving from point scores to segmental scores
- Additional phoneme supervision gains (performance, convergence)
- Generalization to multilingual setup

Future Work

- Unsupervised Phoneme Segmentation
- Systematic comparison in a multilingual setting

Thank you! felix.kreuk@gmail.com