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Multiple object tracking (MOT)

Conventional row-wise softmax
✓reduces multiple assignments
×produces lots of false no 
assignments

✓Proposed MSI emits more 
balanced solutions

Multiple-object tracking (MOT) is a key 
component for RADAR or LIDAR point cloud 
applications. MOT includes an association 
problem which binds the observation order and 
the tracker order under the existence of 
missing and noisy observation points. This 
condition is expressed as the (at-most-) one-
to-one constraint of the assignment matrix.

In this work, 
• We derive a probability-based MOT formulation for learning unsupervised auto-encoding 

neural networks to solve the tracker-observation association problem.
• We propose a modified Sinkhorn iteration algorithm to obtain a differentiable delegate of 

assignment matrix for the tracker-observation association problem.

Time index t ∈ ℕ
Max. time index T ∈ ℕ
Number of features D ∈ ℕ
Number of observations Mt ∈ ℕ
Max. number of observations 𝑀𝑀 ∈ ℕ
Number of trackers K ∈ ℕ
Observations yt ∈ ℝMt×D, 𝑌𝑌 ∈ ℝT×Mt×D

Trackers xt ∈ ℝK×D, X ∈ ℝT×K×D

Assignment At ∈ 0,1 K+1 × Mt+1

s.t. ∑i≠0At i, j = 1, ∑j≠0 At i, j = 1,
𝐴𝐴 ∈ 0,1 𝑇𝑇× K+1 × 𝑀𝑀+1

Maximum marginal likelihood criterion is:

argmax𝜃𝜃 𝑝𝑝𝜃𝜃 𝑌𝑌

The joint probability is defined as:

We introduce amortized posterior 𝑞𝑞𝜙𝜙 𝐴𝐴,𝑋𝑋|𝑌𝑌 , 

continuous relaxation to 𝐴𝐴, omit the KL term to 
obtain an auto-encoder, then the objective is:

We further approximate the posterior and omit the sampling procedure, then the final 
forms are:

Modified Sinkhorn iteration (MSI)

MSI iteratively normalizes row and column in order to comply with the (at-most-) 
one-to-one constraint.

At 𝑖𝑖, 𝑗𝑗 ← At 𝑖𝑖,𝑗𝑗
∑i At 𝑖𝑖,𝑗𝑗

(𝑗𝑗 ≠ 0), At 𝑖𝑖, 𝑗𝑗 ← At 𝑖𝑖,𝑗𝑗
∑j At 𝑖𝑖,𝑗𝑗

(𝑖𝑖 ≠ 0)

MSI empirically converges to constraint-consistent solution. The red dotted line 
indicates the lower bound of the conventional rectangular Sinkhorn iteration. The 
vertical axes correspond to the maximum number of false multiple or no 
associations which surpass or do not reach the constraint.

1. MSI verification experiment using random matrices

2. Assignment generation expleriment

• Synthetic point-cloud from three motion 
models with clutters and missing detections.

• Comparing MSI and row-wise softmax
(RWS) under the same model.

• Evaluation metrics: regression error (reg.), 
assignment L2 error (asgn.), no assignment 
error for row/column (NAR/ NAC), multiple 
assignment error for row/column 
(MAR/MAC)

The evaluation result under the dataset of 
discrete white noise acceleration model 
(DWNA) is shown in the right graph.

We proposed an unsupervised neural MOT algorithm for accurate assignment 
generation application. Experimental results demonstrated that our modified Sinkhorn
iteration outputs a more (at-most-) one-to-one constraint-consistent rectangular 
assignment matrix than the previous row-wise softmax method.
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