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Abstract

Modern video codec uses arithmetic coding for entropy coding. The arithmetic coding
asymptotically achieves the entropy bound provided the true probability distribution. Hence
the compression efficiency heavily relies on the ability to capture the time-variant probability
model in video signals. Variants of first-order linear probability model update schemes have
been used in recent generation video codecs. Built on top of those, a multimodal estimation
scheme that forms a higher order probability model update has been proposed in this work.
We experimentally demonstrate its coding efficiency.

1 Introduction

Lossless entropy coding that aims for compressing a sequence of symbols in an
informationally efficient way is a well-studied area in the last few decades. It is known
that the lower bound of the length of the compressed sequence is the entropy of the
original sequence [1], hence a good algorithm should generate a code whose length
approaches the entropy. Denote a sequence s of length N , the entropy associated with
binary codewords is defined as

N∑
t=1

− log2(p(st|st−1, ..., 1)) :=
N∑
t=1

− log2(pt(st)), (1)

where pt is the probability distribution of symbols at time t conditioned on the previous
observations. It is known that arithmetic code [2] optimally uses the probability to
construct the codewords, which has been widely used in modern video codecs since
[3][4].

In the context of video coding, the codec only receives a streaming sequence of
symbols without knowing their probability distribution. The codec needs to estimate
pt online. Denote the estimation by p̂t, the optimal code length approaches to∑N

t=1− log2(p̂t(st)).
If the codec estimates the probability well, i.e., making p̂t close to pt, the true

code length approaches to the lower bound (1). Clearly probability estimation is
crucial for video coding. The main difficulty however lies in that the probability is by
nature time variant in video signals, which means we cannot estimate pt as a single
number p whose accuracy would improve with more samples observed. Instead, the
probability estimator needs to properly track the underlying model on-the-fly with
provided observations.
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Typical solutions include a first-order linear update approach and its variations.
Denote p̂t ∈ R2 as the probability estimation at time t, and p̂t(0) and p̂t(1) are
probability of symbol 0 and 1 such that p̂t(0) + p̂t(1) = 1. In the CABAC framework
[5]-[8], the probability model is updated as

p̂(0)+ = αp̂(0) + (1− α)1(s = 0), (2)

where α is a constant close to 0.95 and 1(s = 0) is 1 when s = 0 and 0 otherwise. A
barrier is set to prevent the estimated probability being too close to 0 or 1. The AV1
[9, 10] uses an adaptive α that depends on the number of symbols observed so far
(denoted by SymNum):

α = 2−(3+1(SymNum>15)+1(SymNum>31)). (3)

This update rule corresponds to a linear dynamical system, which is used for prediction
of sequential data such as [11].

In this paper, we propose a multimodal probability estimation scheme. It is
formed as a combination of the above first-order linear algorithms and their variations.
The combination weights adapt to the prior observations in the format of maximum
likelihood optimization. It is shown that the multimodal scheme effectively establishes
a higher order system, which provides more flexibility over the first-order form to
capture the time variant probability distributions. We conduct experiments on several
datasets and demonstrate the compression efficiency gains.

2 Multimodal Probability Estimation

In this work, we propose and study several multimodal probability estimation schemes
at various processing complexity.

2.1 Maximum Likelikhood Estimation

In addition to the first-order linear estimator, we first consider a maximum likelihood
estimate (MLE) of i.i.d symbols based on counting as derived next. We consider the
binary random variable case for notion simplicity.

Theorem 1. Suppose s1...st is i.i.d Bernoulli where 0 happens with probability p.
Suppose we do not have any preference of p, i.e., the prior of p is U [0, 1]. From our
observation of the sequence, if 0 happens k times and 1 happens l times, p̂ = k+1

k+l+2
is

the estimator that satisfies
argmin

p̂
−Ep (p log(p̂) + (1− p) log(1− p̂)) (4)

Proof. The aprior probability f satisfies

f(p|st...s1) =
f(st...s1|p)f(p)

f(st...s1)
(5)

Note f(p) = 1, f(st...s1) is a constant and f(st...s1|p) = pk(1− p)l, so

f(p|st...s1) = pk(1− p)l/
∫ 1

0

pk(1− p)ldp. (6)



We consider minimizing

−Ep (p log(p̂) + (1− p) log(1− p̂)) =
∫ 1

0

(p log(p̂) + (1− p) log(1− p̂)) f(p|st...s1)dp.

Take derivative over p̂,

0 = ∇p̂Ep (p log(p̂) + (1− p) log(1− p̂)) =
∫ 1

0

(
p

p̂
− 1− p

1− p̂

)
f(p|st...s1)dp. (7)

we have

p̂ =

∫ 1

0

pf(p|st...s1)dp =
∫ 1

0
pk+1(1− p)ldp∫ 1

0
pk(1− p)ldp

=
k + 1

k + l + 2
. (8)

We then extend the MLE approach to track probabilities conditioned on the
previous 2τ observations. A list of size 2τ stores the estimated probabilities conditioned
on context sequences st−1 : st−τ . When a symbol arrives, we look at its previous τ
symbols and use it as the context to fetch the corresponding probability in the list
and update the count. The probability estimation follows (8). To code each symbol,
we combine the outcomes from MLE and CABAC by taking their average. When the
context has too few observations, the estimation is not stable. In such case, we fall
back to the CABAC update approach. We summarize the algorithm in Algorithm 1
and refer to it as Multimodal Fixed, since the weight coefficients are pre-decided.

2.2 Multimodal Estimation

Now that we have a collection of estimation methods including variants of the first-
order linear update (2) and the MLE. All produce fairly good estimate. A natural
question raised here is whether they could be combined for further improved prediction
accuracy.

Related work that combines two first-order linear estimators has been proposed
in [12], where it keeps two first-order linear estimators (2) with different update rate
α. The effective probability fed into the arithmetic coder is the average of the two
outcomes, which serves as a balance between fast and slow update rates.

In this work, we look at the above problem from an alternative perspective. Let’s
consider a general weighted average of two probability updates

qt+1 = aqt + (1− a)ut, rt+1 = brt + (1− b)ut, pt = wqt + (1− w)rt. (9)

Using z transform, we have

zQ = aQ+ (1− a)U, zR = bR + (1− b)U, P = wQ+ (1− w)R. (10)

By sovling P we get

P = (
w(1− a)
z − a

+
(1− w)(1− b)

z − b
)U. (11)

The inverse z transform gives
pt+1 = (a+ b)pt − abpt−1 + (w(1− a) + (1−w)(1− b))ut + (ab− (1−w)a−wb)ut−1.



Clearly this is a second order system that subsumes (2) if a = b = 0.95. Otherwise
it cannot be trivially reduced to a first order system that only involves pt+1, pt, ut.
This observation premises the fusion of a bigger class of the simple update models by
optimizing the parameters e.g., a, b, w.

Denote np as the number of kernels, let p̂ ∈ Rnp×2, where each row is a probability
distribution (for binary random variable), and w ∈ Rnp is the weight of the linear
combination. We have wT p̂ =

∑
wip̂(i, :), a weighted average of np simple probability

estimators as the final estimation. We update each row of p̂ using its own update
algorithm, and fix p(1, :) to be the baseline AV1 update approach (3). Hence the
AV1 algorithm corresponds to the case w0 = 1, wi = 0,∀i ≥ 2. We use it as the
initialization of linear weights in our algorithm.

Next we consider updating w. Since all update algorithms we choose as kernels
should be “good”, they should have positive correlation with our output wT p̂, so we
constrain w ≥ 0. Each probability estimation is non-negative. We further constrain
1Tw = 1. We use stochastic gradient descent (SGD) to update w. For each st, we
incur the entropy

f(w, p̂; st) = − log2((w
T p̂)(st)), (12)

and we take gradient with respect to w,

∇wf(w, p̂; st) = −
c

(wT p̂)(st)
p̂(:, st), c = 1/ log(2). (13)

At time t, we use step size ηt = η0/t which is standard for SGD (ηt = η0/t
r, r ∈ (0, 1]

are allowed, and stochastic approximation defines r ∈ (1/2, 1] [13]) and update w by
gradient step

w ← argmin
w+≥0,1Tw+=1

‖w+ − (w − ηt∇wf(w, p̂; st))‖2. (14)

The detailed operation can be found in Algorithm 2. We denote this algorithm as
Multimodal SGD. In practice we can also use a fixed step size η = η0 to get a inner
loop argument iterate w̃t, and plug in for final probability estimation wt which satisfies
wt = (

∑t
i=1 w̃i)/t [14], which helps cancel the noise term in SGD. We also propose a

linear dynamic update for variable iterate wt+1 = βwt+(1−β)w̃t as a faster approach.
We can reduce the number of calls for to updating weight w, by using a batch

version as shown in Algorithm 2 (referred as Multimodal Batch). Each epoch, we take
a batch with increasing size 1, 4, 9, 16..., and average the gradient in this batch. We
update w only at the end of each batch, with a fixed step size η0. Empirically, the
convergence rate of Algorithm 2 SGD and batch versions are similar. We also propose
a fast algorithm that approximately solves the optimization problem.

Fast projected optimization. We consider the problem

argmin
w+≥0,1Tw+=1

‖w+ − (w − ηt∇wf(w, p̂; st))‖2. (15)

To simplify notation, we consider argmin
x≥0,1T x=1

1
2
‖x− y‖2. We write the Lagrangian

L(x, λ, µ) =
1

2
‖x− y‖2 − λTx+ µ(1Tx− 1). (16)



The KKT condition is

∇xL(x, µ) = x− y − λ+ µ1 = 0; λ ≥ 0; x ≥ 0; λixi = 0,∀i. (17)

The optimal x is x∗i = max(yi − µ, 0).
So we solve

max
µ

1

2
‖max(y − µ1,0)− y‖2 + µ(1T max(y − µ1,0)− 1) (18)

to get µ∗, and x∗ = max(y − µ∗1,0). Since (18) is 1-dimensional convex optimization
problem, we can solve it by binary search. If there are np baseline algorithms and we
compute the optimizer w∗ up to error ε, the complexity each step is O(np log(1/ε))
(np always exists since it’s the complexity of evaluating the function).

3 Experimental Results

We evaluate the estimation efficiency of the proposed Multimodal Fixed, Multimodal
SGD, and Multimodal Batch methods in terms of the codeword length, as compared
to the probability estimation schemes (2) used in CABAC and (3) in AV1 baseline.

We first use synthetic data to evaluate its efficiency in tracking the underlying
probability. A test vector is formed as multiple fixed-length chunks of random binary
variable outcomes. Each chunk has a constant underlying probability distribution to
produce the random binary symbols. This probability model varies across chunks.
Now between test vectors, we change the chunk size from 50 to 1000 symbols, which
effectively reflects how frequent the underlying model would change.

The code length reduction relative to the update approach (2) used in CABAC
is shown in Fig. 1. The horizontal axis marked as iteration refers to the observed
symbols. When a new symbol arrives, one would run an iteration of probability model
update to estimate the current model for the entropy coding of next symbol. The
vertical axis shows the relative code length reduction in bits. A positive number means
smaller code length.

Clearly the proposed Multimodal SGD tracks the varying probability model well
and hence outperforms the first-order linear update when the probability model shifts
frequently. When the underlying model remains stable, i.e. identical model over a
large chunk size (e.g. 1000 symbols), both the multimodal scheme and first-order
linear update would provide a fairly accurate estimate. In this setting, the multimodal
scheme is expected to perform slightly worse due to its higher model complexity
(degree of freedom) as compared to (2).

algorithm/chunk size 50 100 200 1000
Entropy 2875 2894 2811 2830

Multimodal SGD 3440 3298 3096 2929
CABAC 3772 3487 3128 2929

Table 1: The codeword length under various synthetic models. The optimal entropy
is coded by the underlying probability used to generate the synthetic data.
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Figure 1: Codeword length reduction on synthetic data. Total length is 6000 symbols,
we use chunk size (a) 50, (b) 100, (c) 200, (d) 1000 and generate symbol with Bernoulli
0.01,0.3 alternatively. We plot the improvement of entropy of the proposed Multimodal
SGD (Algorithm 2) as compared to CABAC.

Next we apply the proposed multimodal schemes to the data extracted from the
compressed video. We encode the video clips using the AV1 encoder at high complexity
and high compression efficiency mode (speed 1, two pass encoding). The source code
can be found at [15]. We extract the binary outcomes for whether a 8x8 transform
block is coded as all zero coefficients under context index 1. In other words, this is
the random binary sequence after context modeling, which is fed into the arithmetic
coder and probability model estimator. We compare the compression performance in
terms of codeword length as shown in Table 2-6. The proposed multimodal schemes
generally achieve better coding performance results. The coding gains vary across the
statistical characteristics of the video signals.

4 Conclusions

A multimodal probability estimation framework is derived in this work. It is formed as
a linear combination of multiple simple first-order linear update models, whose weight
coefficients are adaptive to the observed data on-the-fly. The framework effective
establishes a higher order estimation system that provides more flexibility to track
the variation of the underlying probability distributions. It is demonstrated that the
proposed scheme outperform conventional first-order update system, especially when



algorithm/dataset 200 400 800 1200 2000 2800 3600 5200
Multimodal Fixed 1368 2587 2940 3860 3770 3709 3465 2388
Multimodal SGD 1364 2571 2930 3822 3733 3671 3433 2363
Multimodal Batch 1375 2577 2930 3827 3734 3673 3437 2358

CABAC 1375 2592 2951 3873 3789 3727 3476 2401
AV1 1382 2580 2939 3843 3760 3698 3455 2380

Table 2: The test clip is cheer at SIF. The bit-rate used to generate the bit-stream is
shown in the first row. The numbers in the following rows show the codeword length
needed to compress the extracted binary sequences provided the probability model
estimation scheme.

algorithm/dataset 200 400 800 1200 2000 2800 3600 5200
Multimodal Fixed 215 267 477 726 623 472 322 184
Multimodal SGD 214 265 474 719 613 468 320 185
Multimodal Batch 213 265 470 717 612 469 319 186

CABAC 217 269 481 732 627 473 323 186
AV1 215 267 475 726 619 472 321 184

Table 3: The test clip is harbour at CIF. The target bit-rate is shown in the first row.
The numbers in the following rows show the codeword length needed to compress the
extracted binary sequences provided the probability model estimation scheme.

the underlying model is highly time variant.
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Algorithm 1 Entropy coding and probability estimation (Multimodal Fixed)

Fixed quantity: α = (0.01875
0.5

)1/63, p62 = 0.5α62, w = 0.5, tthres = 25, τ = 5 for binary
and 8 for multi-symbol, L = 2τ , mode = 0.
Initialization in outer loop: List = [[0, 0]]L.
Def ProbUpdate(p̂inf , p̂CABAC, τ, st−τ : st, t, α, p62, w, tthres,List,mode) :
\\ t is the current number of received symbols and st−τ : st is the last τ symbols.
p̂inf ← ProbUpdateCount(p̂inf , st, t).
p̂CABAC = ProbUpdateCABAC(p̂CABAC, st, α).
ttmp = 0.
if t > τ then
List(st; st−τ : st−1)← List(st; st−τ : st−1) + 1. ttmp ← τ
while ttmp > 0 and

∑
i List(i; st−ttmp+1 : st) < tthres do

ttmp ← ttmp − 1.
end while
if ttmp > 0 then
pcond ←

List(:;st−ttmp+1:st)∑
i List(i;st−ttmp+1:st)

.
end if

end if
if ttmp > 0 then
if mode then
p← wp̂inf + (1− w)pcond.

else
p← wp̂CABAC + (1− w)pcond.

end if
else
if mode then
p← p̂inf .

else
p← p̂CABAC.

end if
end if
return p, p̂inf , p̂CABAC,List. \\ p is used for encoding.

Def ProbUpdateCABAC(p, s, α) :
Find LPS: σ = argmini∈{0,1} p(i).
if s = σ then
p(σ)← max(αp(σ), p62).

else
p(σ)← αp(σ) + 1− α.

end if
p(1− σ)← 1− p(σ).
return p

Def ProbUpdateCount(p, s, t) :
p = t−1

t
p.

p(s) = p(s) + 1
t

return p



Algorithm 2 Entropy coding and adaptive probability estimation (Multimodal SGD
and Batch)

Require: Sequence of binary symbols s ∈ {0, 1}N arriving online.
Initialization: np = 18, p̂ = 1np · [0.5, 0.5]. w = w̃ = w = [1, 0, ..., 0]T ∈ Rnp ,
α = 0.99 · 2−[0:np−2]/4(np−2) ∈ Rnp−2, η0 = 5, r = 1, b− = b = 0, g = 0np , β = 0.95.
\\αmin = 0.84, r ∈ (1/2, 1].
Choose mode from SGD decreasing step size, SGD average argument, SGD dynamic
argument or SGD batch.
while t ≤ N do

Receive symbol st.
Encode st by wT p̂.
p̂(1, :)← ProbUpdateAV1(p̂(1, :), st, t, 2).
p̂(2, :)← ProbUpdateCount(p̂(2, :), st, t).
p̂(i, :)← ProbUpdateCABAC(p̂(i, :), st, αi−2) for all 3 ≤ i ≤ np.
\\ Can wrap in any prabability estimate algorithms.

if SGD decreasing step size then
w ← argmin

w+≥0,1Tw+=1

‖w+ − (w − η0
tr
· p̂(:,st)
(wT p̂)(st)

)‖2.

\\ Can be solved by fast projected optimization algorithm.
else if SGD average argument then
w̃ ← argmin

w+≥0,1Tw+=1

‖w+ − (w̃ − η0 · p̂(:,st)
(w̃T p̂)(st)

)‖2.

w ← (1− 1
t+1

)w + 1
t+1
w̃. \\ = 1

t+1

∑t+1
i=1 w̃i

else if SGD dynamic argument then
w̃ ← argmin

w+≥0,1Tw+=1

‖w+ − (w̃ − η0 · p̂(:,st)
(w̃T p̂)(st)

)‖2.

w ← βw + (1− β)w̃.
else if SGD batch then
if t ≤ b then
g ← g + 1

b−b−+1
1

(wT p̂)(st)
p̂(:, st). \\ Batch from b− to b, size 1, 4, 9, 16, ...

end if
if t = b then
w ← argmin

w+≥0,1Tw+=1

‖w+ − (w − η0g)‖2.

g ← 0np .
b+ ← b+ (

√
b− b− + 1 + 1)2, b− ← b+ 1, b← b+. \\ Update batch.

end if
end if
t← t+ 1.

end while
Def ProbUpdateAV1(p, s, t,NumOfSyms) :
p0 ← 0.0076.
r ← 3 + (t > 15) + (t > 31) + (NumOfSyms > 2) + (NumOfSyms > 4)
p← max((1− 2−r)p, p0).
p(s)← p(s) + 1−

∑NumOfSyms
i=1 p(i)

return p
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