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Problem overview and baseline solutions
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Goal: filter out signal perturbation and minimize the artefacts
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Filtering out time-frequency areas
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Problem of filtering out time-frequency areas formulation

Time-frequency transform: 7 : Rt —s RMxN

The perturbation signal xpe, is well localized in a region Q and the target
signal x,er is everywhere in TF plane

Observations: Xg = Xref + Xper

Problem of filtering out time-frequency areas formulation

Xy = argmin ||Tx — 'Tx0||2§—|—)\ ||Tx||§2 , A>0,
XECL e —r N——
data fitting energy within Q
where |ly|[g == Iy[K]|*.
ke
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Gabor transform
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Figure: Lattice: A =2Zy X Zny with N=L/aand M =L/b

For a window g € RE, the Gabor atom g, at TF point (m, n) € A:
gmnll] = g[l — na]e?™mb/M | ¢ 7, .

Gabor transform:

L-1

Vex[m, n] = (X, 8mn) = ZX[/]g[/ — naje~2immbl/M,
1=0
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Gabor multiplier

For suitably chosen g and A (i.e. generating a tight Parseval frame) then,
Vx € CE, we have:

X = Z Vgx[m’ n|gmn = Z<x7 gmn)&mn -

m,n m,n

Gabor multiplier is similarly defined via a transfer function also called
mask m in the time-frequency domain, i.e,

Definition
The Gabor multiplier associated to (g, A) with mask m € RM*N g

defined by:
Mmx = Z m[m7 n] <xu gmn>gmn )

m,n

where m denotes also the operator of pointwise multiplication by m.
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Gabor transform -Gabor multiplier
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Main property
If m is real-valued then 9%, is Hermitian. Then there is an orthonormal
basis of CL formed by 9, eigenvectors.

[llustration: eigenvectors associated with large eigenvalues tend to follow
TF localization properties of the mask.

LR

(a) mask (b) Large eigenvalue (c) Small eigenvalue
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Analytical solution
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TF areas filtering: normal equations
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Objective function:
F(x) = [[Vex — Vexoll5 + Al|Vex|d
Normal equations:

(Dﬁﬁ + )\DﬁQ)X = mﬁ)([]
[/ + ()\ — 1)93?9] X = (/ — SIRQ)XO

[l + (A= 1)Mg] is invertible for A > 0 due to:
If m e CM*N then M, defines a bounded operator with operator norm

|Mmllop < C|lM||o, where C is a constant. In particular, if g and A
generate a Parseval frame, then |Mmlop < [|M]|co-
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TF areas filtering: analytical solution

Mg is diagonalizable, so there is a unitary matrix U and a diagonal
matrix D = diag(oy,...,01), 01 > --- > oy such that Mg = UDU™L.

Analytical solution

‘X(T/
1—(1—/\)0'/

Yl=1,0 5L

szxo—Udiag( )U‘lxo,)\>0

Typical behavior of eigenvalues (A =0.1): 0 < o,y <1
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Analytical solution
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Efficient tuning of the hyperparameter

Computational issues

@ Most costly part: diagonalization of 91q. It does not depend on A
and is done only once ©.

© Low rank approximations can be used to reduce computing time ©.

Tuning of the regularization parameter \

@ )\ can be tuned to match a prescribed target energy E = ||Vgx}||3.

o We set E = ||Vgx3||3, from a region Q' similar to  and not affected
by the perturbation.
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Numerical simulations
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Problem data
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Figure: Observations (left), Mask (right)

@ signal length: L = 8192
@ sampling frequency: fs = 8000 Hz
@ X : wide-band engine sound and X, : chirp-like bird song

@ g : hanning window of length 128 (16ms) , hop size a = 32 (4ms) ,
and frequency shift b = 512 (16Hz).
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Comparative reconstruction results
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SNR =17.54 dB
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Numerical simulations
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SNRs for several targets and perturbations

Target
| car | train [ aircraft | perturbation |
RedEnerg | 25.05 | 23.88 | 26.80
ZerVal 2423 | 16.52 24.73 Beeps

RandVal | 24.90 | 16.15 24.73

RedEnerg | 18.88 | 22.49 | 20.72
ZerVal 17.18 | 20.70 16.59 Finger snap
RandVal | 16.92 | 16.17 | 15.93

RedEnerg | 21.67 | 20.97 | 17.96
ZerVal 17.61 | 13.98 12.33 Clicks
RandVal | 10.57 | 5.60 11.07

RedEnerg | 18.01 | 21.52 20.04
ZerVal 17.4 | 21.52 19.71 Birdsong
RandVal 17.13 | 21.28 19.56
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Conclusion

Conclusion

@ We have addressed the problem of estimating a target signal, with
no assumption on its contents, when perturbated by an additive
signal that is well located in a region Q of the TF plane.

@ We have proposed an optimization problem in which the energy in Q
is controlled.

@ We have used the nice properties of the Gabor multipliers for its
analytical and numerical resolution.

@ The proposed method outperforms some industrial baseline systems
in terms of reconstruction SNR.

@ Ongoing work: efficient algorithms for speeding up computations.
ama-marina.kreme@univ-amu.fr

Thank you for your attention!
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