

Filtering out time-frequency areas using Gabor multipliers

<u>A.Marina Krémé</u> $^{1,2},$ Valentin Emiya 2 , Caroline Chaux 1 and Bruno Torrésani 1

¹ Institut de Mathématiques de Marseille, Aix Marseille Univ, CNRS, France.

² Laboratoire d'Informatique et des Systèmes, Aix Marseille Univ, CNRS, France.

IM- UNIC CONS 735 CAMBER DUARD CONS 745

Institut de Mathématiques de Marseille

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Outline				

- Filtering out time-frequency areas
 - Problem overview and baseline solutions
 - Problem statement
- 2 Gabor transform -Gabor multiplier
 - Gabor transform
 - Gabor multiplier
 - Some properties

3 Analytical solution

- TF areas filtering: normal equations
- TF areas filtering: analytical solution
- TF areas filtering: λ setting

4 Numerical simulations

- Problem data
- Comparative reconstruction results and SNRs
- More experiments

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Outline				

Filtering out time-frequency areas

- Problem overview and baseline solutions
- Problem statement

Gabor transform -Gabor multiplier

3 Analytical solution

4 Numerical simulations

5 Conclusion

Obs: target + perturbation

 Ω : masked area

Goal: filter out signal perturbation and minimize the artefacts

ZerVal method: fill Ω with zeros Audible artefact

RandVal method: interp in Ω + random phases [ANSYS]

RedEnerg Our method

 Filtering out time-frequency areas
 Gabor transform -Gabor multiplier
 Analytical solution
 Numerical simulations
 Conclusion

 O
 000
 000
 000
 000

Problem of filtering out time-frequency areas formulation

Time-frequency transform: $\mathcal{T}: \mathbb{R}^L \longrightarrow \mathbb{R}^{M \times N}$

The perturbation signal \mathbf{x}_{per} is well localized in a region Ω and the target signal \mathbf{x}_{ref} is everywhere in TF plane

Observations: $\mathbf{x}_0 = \mathbf{x}_{ref} + \mathbf{x}_{per}$

Problem of filtering out time-frequency areas formulation

$$\begin{split} \mathbf{x}_{\lambda}^{*} &= \underset{\mathbf{x} \in \mathbb{C}^{L}}{\operatorname{argmin}} \underbrace{\|\mathcal{T}\mathbf{x} - \mathcal{T}\mathbf{x}_{\mathbf{0}}\|_{\Omega}^{2}}_{data \ fitting} + \lambda \underbrace{\|\mathcal{T}\mathbf{x}\|_{\Omega}^{2}}_{energy \ within \ \Omega} , \quad \lambda > 0, \\ where \quad \|\mathbf{y}\|_{\Omega}^{2} := \sum_{k \in \Omega} |\mathbf{y}[k]|^{2}. \end{split}$$

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Outline				

- Filtering out time-frequency areas
- 2 Gabor transform -Gabor multiplier
 - Gabor transform
 - Gabor multiplier
- 3 Analytical solution
- 4 Numerical simulations

5 Conclusion

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
00	00	000	000	
Gabor transform				

Figure: Lattice: $\Lambda = \mathbb{Z}_M \times \mathbb{Z}_N$ with N = L/a and M = L/b

For a window $\mathbf{g} \in \mathbb{R}^{L}$, the Gabor atom \mathbf{g}_{mn} at TF point $(m, n) \in \Lambda$:

$$\mathbf{g}_{mn}[l] = \mathbf{g}[l - na]e^{2i\pi mbl/M}, \forall l \in \mathbb{Z}_L.$$

Gabor transform:

$$\mathcal{V}_{\mathbf{g}}\mathbf{x}[m,n] = \langle \mathbf{x}, \mathbf{g}_{mn} \rangle = \sum_{l=0}^{L-1} \mathbf{x}[l]\mathbf{g}[l-na]e^{-2i\pi mbl/M}$$

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
00	000	000	000	
Gabor multiplier				

For suitably chosen **g** and Λ (i.e. generating a tight Parseval frame) then, $\forall \mathbf{x} \in \mathbb{C}^{L}$, we have:

$$\mathbf{x} = \sum_{m,n} \mathcal{V}_{\mathbf{g}} \mathbf{x}[m,n] \mathbf{g}_{mn} = \sum_{m,n} \langle \mathbf{x}, \mathbf{g}_{mn} \rangle \mathbf{g}_{mn} \; .$$

Gabor multiplier is similarly defined via a transfer function also called mask ${\bf m}$ in the time-frequency domain, i.e,

Definition

The Gabor multiplier associated to (\mathbf{g},Λ) with mask $\mathbf{m}\in\mathbb{R}^{M\times N}$ is defined by:

$$\mathfrak{M}_{\mathbf{m}}\mathbf{x} = \sum_{m,n} \mathbf{m}[m,n] \langle \mathbf{x}, \mathbf{g}_{mn} \rangle \mathbf{g}_{mn} ,$$

where \mathbf{m} denotes also the operator of pointwise multiplication by \mathbf{m} .

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
00	000	000	000	

Main property [H. G. Feichtinger and K. Nowak, 2002.]

If **m** is real-valued then \mathfrak{M}_m is Hermitian. Then there is an orthonormal basis of \mathbb{C}^L formed by \mathfrak{M}_m eigenvectors.

<u>Illustration</u>: eigenvectors associated with large eigenvalues tend to follow TF localization properties of the mask.

(c) Small eigenvalue

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
00	000	000	000	
Outline				

- Filtering out time-frequency areas
- 2 Gabor transform -Gabor multiplier

3 Analytical solution

- TF areas filtering: normal equations
- TF areas filtering: analytical solution
- TF areas filtering: λ setting

4 Numerical simulations

Conclusion

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
00	000	000	000	
TE areas filtering	r. normal equation	ons		

Objective function:

С

$$f(\mathbf{x}) = \|\mathcal{V}_{\mathbf{g}}\mathbf{x} - \mathcal{V}_{\mathbf{g}}\mathbf{x}_{\mathbf{0}}\|_{\Omega}^{2} + \lambda \|\mathcal{V}_{\mathbf{g}}\mathbf{x}\|_{\Omega}^{2}$$

Normal equations:

$$(\mathfrak{M}_{\overline{\Omega}} + \lambda \mathfrak{M}_{\Omega})\mathbf{x} = \mathfrak{M}_{\overline{\Omega}}\mathbf{x}_{\mathbf{0}}$$
$$[I + (\lambda - 1)\mathfrak{M}_{\Omega}]\mathbf{x} = (I - \mathfrak{M}_{\Omega})\mathbf{x}_{\mathbf{0}}$$

 $[I + (\lambda - 1)\mathfrak{M}_{\Omega}]$ is invertible for $\lambda > 0$ due to:

If $\mathbf{m} \in \mathbb{C}^{M \times N}$, then $\mathfrak{M}_{\mathbf{m}}$ defines a bounded operator with operator norm $\|\mathfrak{M}_{\mathbf{m}}\|_{op} \leq C \|\mathbf{m}\|_{\infty}$, where *C* is a constant. In particular, if \mathbf{g} and Λ generate a Parseval frame, then $\|\mathfrak{M}_{\mathbf{m}}\|_{op} \leq \|\mathbf{m}\|_{\infty}$.

 Filtering out time-frequency areas
 Gabor transform -Gabor multiplier
 Analytical solution
 Numerical simulations
 Conclusion

 00
 00
 00
 000

TF areas filtering: analytical solution

 \mathfrak{M}_{Ω} is diagonalizable, so there is a unitary matrix U and a diagonal matrix $D = \operatorname{diag}(\sigma_1, ..., \sigma_L), \sigma_1 \geq \cdots \geq \sigma_L$ such that $\mathfrak{M}_{\Omega} = UDU^{-1}$.

Analytical solution

$$\mathbf{x}_{\lambda}^{*} = \mathbf{x}_{\mathbf{0}} - U \operatorname{diag} \underbrace{\left(\frac{\lambda \sigma_{I}}{1 - (1 - \lambda)\sigma_{I}}\right)}_{\gamma_{I}, I = 1, \cdots, L} U^{-1} \mathbf{x}_{\mathbf{0}}, \ \lambda > 0$$

Typical behavior of eigenvalues ($\lambda = 0.1$): $0 \le \sigma_I, \gamma_I \le 1$

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution ○○●	Numerical simulations	Conclusion
Efficient tuning c	of the hyperparam	neter		

Computational issues

- Most costly part: diagonalization of M_Ω. It does not depend on λ and is done only once ⁽²⁾.
- Output in the second second

Tuning of the regularization parameter λ

- λ can be tuned to match a prescribed target energy $E = \|\mathcal{V}_{\mathbf{g}} \mathbf{x}_{\lambda}^*\|_{\Omega}^2$.
- We set $E = \|\mathcal{V}_{\mathbf{g}} \mathbf{x}_{\lambda}^*\|_{\Omega'}^2$ from a region Ω' similar to Ω and not affected by the perturbation.

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Outline				

- **1** Filtering out time-frequency areas
- 2 Gabor transform -Gabor multiplier

3 Analytical solution

4 Numerical simulations

- Problem data
- Comparative reconstruction results and SNRs
- More experiments

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Conclusion
Problem data			

Figure: Observations (left), Mask (right)

- signal length: L = 8192
- sampling frequency: fs = 8000 Hz
- **x**_{ref} : wide-band engine sound and **x**_{per} : chirp-like bird song
- **g** : hanning window of length 128 (16*ms*) , hop size a = 32 (4*ms*) , and frequency shift b = 512 (16*Hz*).

 Filtering out time-frequency areas
 Gabor transform -Gabor multiplier

 00
 000

Analytical solution

Numerical simulations Conclusion

Comparative reconstruction results

$$SNR(\mathbf{x}_{ref}, \mathbf{x}) = 20 \log 10 \left(\frac{\|\mathbf{x}_{ref}\|}{\|\mathbf{x}_{ref} - \mathbf{x}\|} \right)$$

Filtering out time-frequency areas Gabor transform -Gabor multiplier Analytical solution

Numerical simulations Conclusion 000

SNRs for several targets and perturbations

		Target		
	car	train	aircraft	perturbation
RedEnerg	25.05	23.88	26.80	
ZerVal	24.23	16.52	24.73	Beeps
RandVal	24.90	16.15	24.73	
RedEnerg	18.88	22.49	20.72	
ZerVal	17.18	20.70	16.59	Finger snap
RandVal	16.92	16.17	15.93	
RedEnerg	21.67	20.97	17.96	
ZerVal	17.61	13.98	12.33	Clicks
RandVal	10.57	5.60	11.07	
RedEnerg	18.01	21.52	20.04	
ZerVal	17.4	21.52	19.71	Birdsong
RandVal	17.13	21.28	19.56	

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Outline				

- Filtering out time-frequency areas
- 2 Gabor transform -Gabor multiplier
- 3 Analytical solution
- 4 Numerical simulations

Filtering out time-frequency areas	Gabor transform -Gabor multiplier	Analytical solution	Numerical simulations	Conclusion
Conclusion				

- We have addressed the problem of estimating a target signal, with no assumption on its contents, when perturbated by an additive signal that is well located in a region Ω of the TF plane.
- We have proposed an optimization problem in which the energy in Ω is controlled.
- We have used the nice properties of the Gabor multipliers for its analytical and numerical resolution.
- The proposed method outperforms some industrial baseline systems in terms of reconstruction SNR.
- Ongoing work: efficient algorithms for speeding up computations.

ama-marina.kreme@univ-amu.fr

Thank you for your attention!