

Neural Network based Spectral Mask Estimation for Acoustic Beamforming

Jahn Heymann Lukas Drude Reinhold Haeb-Umbach

Multi channel processing with neural networks

MOTIVATION

- Neural networks are powerful single-channel models
 - Rendered many feature enhancement techniques superfluous
- Few multi-channel approaches
 - Stack channels
 - Work on raw waveforms

 Our approach: Combine neural network with a traditional beamformer

Department of Communications NT Engineering

GEV & MVDR

ACOUSTIC BEAMFORMING

Acoustic beamforming

MVDR

- Minimize noise
- Source distortionless

 $\underset{\mathbf{F}}{\operatorname{argmin}} \mathbf{F}^{H} \mathbf{\Phi}_{\mathbf{NN}} \mathbf{F} \quad \text{s.t. } \mathbf{F}^{H} \mathbf{d} = 1.$

$$\mathbf{F}_{\mathrm{MVDR}} = \frac{\mathbf{\Phi}_{\mathbf{NN}}^{-1} \mathcal{P}\left\{\mathbf{\Phi}_{\mathbf{XX}}\right\}}{\mathbf{d}^{\mathrm{H}}\mathbf{\Phi}_{\mathbf{NN}}^{-1} \mathcal{P}\left\{\mathbf{\Phi}_{\mathbf{XX}}\right\}}$$

· GEV

- Maximize SNR
- Introduces distortions

$$\underset{\mathbf{F}}{\operatorname{argmax}}\,\frac{\mathbf{F}^{H}\boldsymbol{\Phi}_{\mathbf{X}\mathbf{X}}\mathbf{F}}{\mathbf{F}^{H}\boldsymbol{\Phi}_{\mathbf{N}\mathbf{N}}\mathbf{F}}$$

$$\mathbf{\Phi_{XX}F} = \lambda \mathbf{\Phi_{NN}F}$$

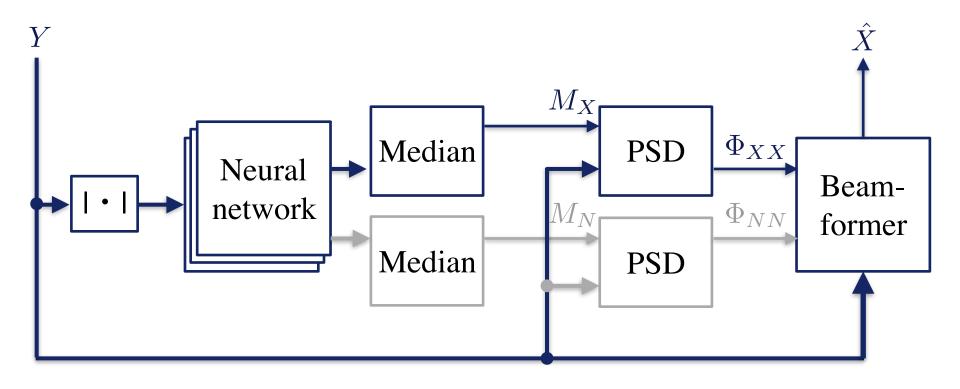
Acoustic beamforming

- Both beamformers depend only on signal statistics
 - Cross-Power Spectral Density of speech and noise
 - Independent of microphone array
 - No assumption on acoustic transfer function
- We estimate PSD matrices using masks

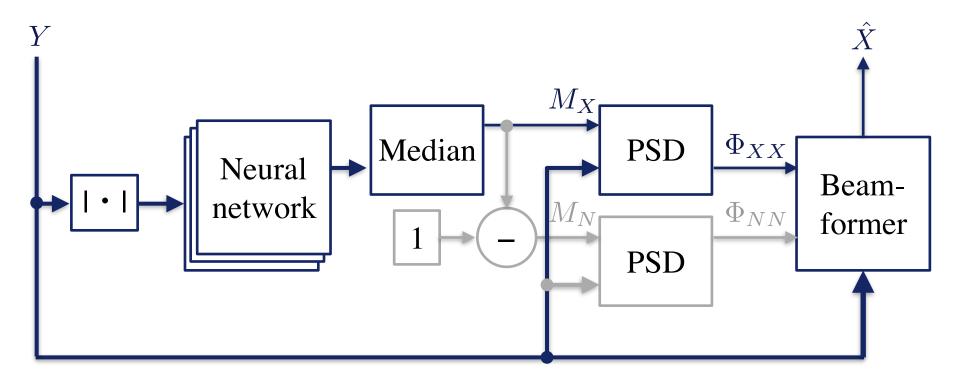
$$\mathbf{\Phi}_{\nu\nu} = \frac{1}{T} \sum_{t=1}^{T} M_{\nu}(t) \mathbf{Y}(t) \mathbf{Y}(t)^{\mathrm{H}} \quad \text{where} \quad \nu \in \{X, N\}$$

• This allows us to incorporate a neural network

Neural mask estimation


SYSTEM OVERVIEW

System overview


noise-aware

System overview

clean

System overview

BLSTM

Sophisticated

Layer	Units	Type	Non-linearity	dropout
1	256	BLSTM	Tanh	0.5
2	513	FF	ReLU	0.5
3	513	FF	ReLU	0.5
4	513/1026	FF	Sigmoid	0.0

FF

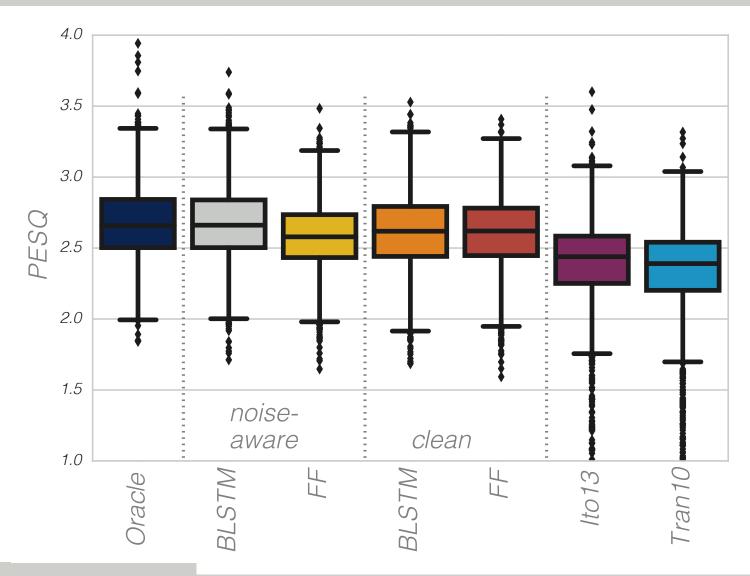
Simple

Layer	Units	Туре	Non-linearity	dropout
1	513	FF	ReLU	0.5
2	513/1026	FF	Sigmoid	0.0

- CHiME III challenge
 - 6 channels
 - 4 different real-world background noise types
- Metrics
 - PESQ / WER
- Compared to
 - Parametric source separation approaches
 - [Tran10]
 - [Ito13]
 - BeamformIt! (only ASR)

MVDR vs. GEV, Speech Enhancement, Speech Recognition RESULTS

Results


GEV works better with our masks as it avoids the matrix

inversion

	Evaluation <i>real</i>		
	clean	noise-aware	
Baseline	40.17		
BLSTM	22.28	15.42	
FF	21.93	17.85	
BeamformIt!	22.65		
Ito13	27.32		
Tran10	22.70		

BeamformIt!*	12.79	
BLSTM*		7.45

CONCLUSIONS

Conclusion

- Beamformer supported by Neural Network
- Significant performance gains
- Independent of microphone array configuration
- Small & simple network possible
- Robust against mismatch conditions

Code available:

https://github.com/fgnt/nn-gev