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3Motivation, Related Work, and Pipeline 
An overview of self-training and prior work in speech.
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Self-Training in End-to-End ASR
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Leverage unpaired audio and unpaired data.

Labeled Audio Acoustic Model

Langauge ModelExternal Text

Beam Search Decoder( )
• Unlabeled audio is equally-weighted. 
• Model trained on pseudo-labeled audio is trained from scratch, rather than fine-tuning.



Self-Training in End-to-End ASR

131Self-Training

Formulation

Given a paired dataset  and pseudo-labeled data 
, where  is a set of paired audio data. 

We maximize the following equally-weighted objective: 

𝒟 = {(X1, Y1), . . . , (Xn, Yn)}
�̄� = {(Xi, Ȳi) ∣ Xi ∈ 𝒳} 𝒳

∑
(X,Y)∈𝒟

log (P(Y ∣ X))) + ∑
(X,Ȳ)∈�̄�

log (P(Ȳ ∣ X)))
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• Self-training in hybrid speech recognition 

- Focus on data filtering to improve PL quality (Charlet, 2001; Wessel, 2004; Vesely, 2013, Vesely 2017) 

- Confidence-based filtering (Charlet, 2001; Wessel, 2004) or agreement-based selection (Vesely, 2013) 

• Student-teacher models and cycle-consistency loss with TTS/speech generation 

- Cycle consistency (Hori, 2019) 

- Teacher output labels/posteriors used to train a student model (Hari, 2019) 

• Backtranslation or continuous embedding-style techniques 

- Data augmentation with backtranslation (Hayashi, 2018) 

- TTS-based techniques (Baskar, 2019) 

- Audio and text in the same embedding space (Karita, 2018)

Delphine Charlet, Confidence-measure-driven unsupervised incremental adaptation for hmm-based speech recognition, ICASSP 2001 
Wessel et al. Unsupervised training of acoustic models for large vocabulary continuous speech recognition, IEEE Trans Speech Audio Process, 2004 

Vesely et al. Semi-supervised training of deep neural networks, ASRU 2013 
Vesely et al. Semisupervised DNN training with word selection for ASR, Interspeech 2017 

Hayashi et al. Back-translation-style data augmentation for end-to-end ASR, SLT 2018 
Hari et al. Lessons from building acoustic models with a million hours of speech, ICASSP 2019 

Karita et al. Semi-supervised end-to-end speech recognition, Interspeech 2018

Related Work
1Related Work
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• A strong baseline model. 

- A well-performing end-to-end, sequence-to-sequence model trained on 100 hours of clean speech from 
LibriSpeech. 

• Filtering techniques. 

- Heuristic filtering in addition to confidence-based filtering for mitigating common pitfalls with sequence-to-
sequence models. 

• A novel ensemble approach. 

- Increasing pseudo-label diversity improves results.

Highlights
1Overview

Our contributions are in three areas:
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17Baseline AM and LM and Ensemble & Filtering Techniques 
Key components for self-training with sequence-to-sequence models.

2
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• LibriSpeech (Panayotov et al. 2015) 

- Labeled (“paired”) audio 
• LibriSpeech train-clean-100 (100 hours) 

- Unlabeled (“unpaired”) audio 
• LibriSpeech train-clean-360 — clean speech (360 hours) 

• LibriSpeech train-other-500 — noisy speech (500 hours) 

• LibriSpeech LM Corpus 

- Text from 14k books.

Panayotov et al. Librispeech: an ASR corpus based on public domain audio books, ICASSP 2015

Audio Data
1Data

LibriSpeech audio books and language model corpuses.



Language Model Training Corpus

191Data

Carefully remove text for which there is pseudo-unpaired audio — i.e. some train sets.

LibriSpeech LM Corpus

train-
clean-360

train-
other-500

Remove text which 
corresponds to audio in 
our unpaired audio sets.
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Hannun et al. Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions, Interspeech 2019 
Dauphin et al. Language modeling with gated convolutional networks, ICML 2017 

Zeghidour et al. Fully convolutional speech recognition, 2018 
[24] Liu et al. Adversarial training of end-to-end speech recognition using a criticizing language model, ICASSP 2019 

[22] Hayashi et al. Back-translation-style data augmentation for end-to-end ASR, SLT 2018 
[1] Lüscher et al.  RWTH ASR systems for LibriSpeech: Hybrid vs attention, Interspeech 2019 

Irie et al. On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition, Interspeech 2019

Training a Strong Baseline Model
1Baseline

• Time depthwise-separable convolutions with sequence-to-sequence loss (Hannun et al. 2019) 

- Sequence-to-sequence decoder with attention 

- Stable beam search decoding with a language model 

• GCNN language model (Dauphin et al. 2017) 

- Follows the recipe from Zeghidour et al. 2018.

WER for end-to-end models trained on 
LibriSpeech train-clean-100, with no external LM.

Dev WER Test WER
clean other clean other

Liu et al. [24] 21.6 - 21.7 -
Hayashi et al. [22] 24.9 - 25.2 -
Lüscher et al. [1] 14.7 38.5 14.7 40.8

Our model 14.0 37.0 14.9 40.0

Table 3. The WER for various end-to-end models trained on
the “train-clean-100” subset of LibriSpeech. All numbers are
reported without an external LM.

A. APPENDIX

A.1. Supervised Baseline

A common setup for semi-supervised ASR is to use the “train-
clean-100” subset of LibriSpeech as the labelled data set [22,
24]. Table 3 shows the WER from our supervised baseline on
“train-clean-100” as well as several other results from the lit-
erature. Hayashi et al. [22] use a sequence-to-sequence model
with a BiLSTM-based encoder and location-based attention.
They train their model on “train-clean-100” as the baseline
for a back-translation style approach. Liu et al. [24] augment
a sequence-to-sequence model with the CTC loss. Compared
with the two, our baseline WER on the clean dev and test sets
are lower by more than 30% relative.

On the other hand, Lüscher et al. [1] use the sequence-to-
sequence model proposed in [25] and to our knowledge, pro-
duce the best prior result when limited to “train-clean-100.”
Compared with this, our TDS baseline model achieves better
WER on the dev sets and has similar test WER. We believe
our supervised baseline is a challenging yet practical starting
point for semi-supervised experiments. This baseline enables
us to more meaningfully demonstrate the improvement from
adding additional unlabelled audio or text data.

A.2. Evaluating Beam Search

To study the importance of the stable beam search, we evalu-
ate self-training in two other conditions. First, we compare to
pseudo-labels generated from the greedy output of the acous-
tic model alone. We perform greedy decoding with the su-
pervised baseline model on “train-clean-360” to generate the
pseudo-labels. Second, we compare to pseudo-labels gener-
ated from a simple beam search with a language model but
without the EOS threshold and hard attention limit described
in Section 2.1.

With each setting, we train three models and report the
average WER without an external LM in Table 4. We also
compare the pseudo-labels with the ground-truth transcription
of “train-clean-360” and compute label WER as an indicator
of the label quality. We can see in Table 4 that using an LM
in a simple beam search improves the quality of the pseudo-

Labelling Label Dev Clean Dev Other
Method WER WER WER

AM greedy 14.45 12.27 33.42
AM+LM simple 12.15 9.73 29.77
AM+LM stable 8.25 9.55 28.91

Table 4. We show the WER from training on pseudo-labels
generated using three approaches: (1) only using the AM
without a beam search (AM greedy), (2) using both the AM
and the LM with a simple beam search (AM+LM simple) and
(3) using both the AM and LM with the stable beam search
described in Section 2.1 (AM+LM stable). Dev clean and
other WERs are reported without an LM averaged over three
models.
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Fig. 3. The WER on the clean and other development sets
as a function of the perplexity of the LM used to generate
the pseudo-labels. For each pseudo-labelled data set we train
three models and report the average WER without an LM.

labels and hence the resulting trained model. The stable beam
search further improves the pseudo-label quality and the re-
sulting WER of a model trained with those labels.

A.3. Importance of the LM

We examine the impact of the LM by training multiple mod-
els with pseudo-labels generated from LMs with different
perplexity on the dev set. We control for LM perplexity by
training the model for a variable number of steps. For each
pseudo-label set, we train three models and report the average
WER without decoding with an LM.

In Figure 3 we show the reduction in WER from self-
training on pseudo-labels generated with varying LM perplex-
ities. We can see a clear trend that when the LM perplexity
decreases, the WER on the dev set also decreases. In other
words, a better LM leads to better model performance for
self-training. In Table 4 we show that without using any lan-
guage model to generate pseudo-labels (AM Greedy), we get
a WER of 12.27 on dev clean and 33.42 on dev other. Com-
pared with Figure 3, it is clear that using an LM even with
higher perplexity improves the effectiveness of self-training.

*Current state of the art on train-clean-100 is from Irie et al. with 12.7, 33.9, 12.9, and 35.5 on 
dev-clean, dev-other, test-clean, and test-other, respectively.
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Ground truth: I went to the store then I went to my house <EOS> 

• Looping: 
I went to the store then I went to the store then I went to the store ... 

• Early stopping: 
I went to the store <EOS>

Filtering Pseudo-Labels
1Filtering

Sequence-to-sequence models with attention can fail catastrophically.
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Filtering Pseudo-Labels
1Filtering

Two approaches to filtering:

• Heuristic 

- Filter based on looping and early stopping 
• Remove examples with n-grams that repeat more than k times 

• Remove examples with early stopping 

• Generic 

- Use a threshold based on scores output by the model

Let   be frames of speech with predicted transcriptions :X = [X1, . . . , XT] Y = [Y1, . . . , YT]

where  is the number of tokens in the utterance.| Ȳi |

ConfidenceScore(Ȳi) =
log (PAM (Yi ∣ Xi))

| Ȳi |
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Effect of Filtering
1Ablation Studies

Confidence score-based filtering helps significantly with noisy data and marginally with clean.
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Clean pseudo-labels evaluated on clean audio
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Noisy pseudo-labels evaluated on noisy audio
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Heuristic filtering: repeated n-gram and early-stopping filters. “Both” adds confidence-based filtering on top of heuristic filters.
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Effect of Filtering
1Ablation Studies

Confidence score-based filtering helps significantly with noisy data and marginally with clean.
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Clean pseudo-labels evaluated on clean audio
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Noisy pseudo-labels evaluated on noisy audio
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c=2 and n=4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-

Heuristic filtering: repeated n-gram and early-stopping filters. “Both” adds confidence-based filtering on top of heuristic filters.

• Clean setting — data starvation quickly occurs with confidence-based filtering. 
• Noisy setting — confidence-based filtering has a large impact and returns diminish after a larger 

percentage of audio is filtered. Data starvation still eventually occurs.
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Pseudo-Label Ensembles
1Ensembles

Increase label diversity by sampling from different pseudo-labels for the same audio.

• Train  models. 

- Using different seeds to change initialization can provide diversity. 

• Generate pseudo-labels  for each of the  models. 

- Apply filtering criterion on resulting pseudo-labels as needed. 

• Train a new model on the resulting pseudo-labels — sample from the available  labels for each example. 

When training, we effectively maximize the objective: 

K

�̄�m M

k

∑
(X,Y)∈𝒟

log (P(Y ∣ X))) +
1
M

M

∑
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∑
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log (P(Ȳ ∣ X)))
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Pseudo-Label Ensembles
1Ensembles

Increase label diversity by sampling from different pseudo-labels for the same audio.
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• Increasing the number of models in the ensemble improves performance. 
• Using an ensemble on top of both heuristic and confidence based filters is best in the noisy setting.
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Results 

WER on LibriSpeech 
datasets with pseudo-
labeling, improving on prior 
results.

Self-Training in 
End-to-End ASR 

Motivating/defining the 
pipeline and related work.

Baseline Acoustic 
and Language 
Model, Filtering, and 
Ensembles 

Key components for sequence-
to-sequence models.

Future Work 

Extending self-training-
style techniques in speech.



28Results 
Word error rate improvements with pseudo-labeled clean and noisy audio.

3



• Oracle word error rate (“Oracle WER”) is the word error rate for a model trained on ground truth labels for a 
given pseudo-label set and represents a palatable upper bound on model performance. 

Word error rate recovery rate — “WERR”   =     

• Pseudo-label word error rate is the word error rate of generated pseudo-labels with respect to ground truth 
labels, after filtering. 

- In our set up, since we know the ground truth labels for the audio on which we generate pseudo-labels, we can compute this.

baseline WER − semi-supervised WER

baseline WER − Oracle WER

29

Measuring Improvements
1In Speech



Results — 360 hours of clean unlabeled audio
301Results

Clean Test Set WER % Noisy Test Set WER %

Baseline 
(100 hours, labeled) 8.06 30.44

Pseudo-label
(100 hrs labeled + 360 hrs unlabeled) 6.46 22.90

Pseudo-label Ensemble*
(100 hrs labeled + 360 hrs unlabeled) 5.79 21.63

Oracle 
(100 hrs labeled + 360 hrs labeled) 4.23 17.36

*Using an ensemble with 5 models



Results — 500 hours of noisy unlabeled audio
311Results

Clean Test Set WER Noisy Test Set WER

Baseline 
(100 hours, labeled) 8.06 30.44

Pseudo-label
(100 hrs labeled + 500 hrs unlabeled) 6.56 22.09

Pseudo-label Ensemble*
(100 hrs labeled + 500 hrs unlabeled) 6.20 20.11

Oracle 
(100 hrs labeled + 500 hrs labeled) 3.83 11.28

*Using an ensemble with 4 models



Results — Recovery Rates
321Results

WER Clean Test Set WER Noisy Test Set WER
Baseline 

(100 hours, labeled) 8.06 30.44
Pseudo-label Ensemble

(100 hrs labeled + 360 hrs unlabeled) 5.79 21.63
Oracle 

(100 hrs labeled + 360 hrs unlabeled) 4.23 17.36

Pseudo-label Ensemble
(100 hrs labeled + 500 hrs unlabeled) 6.20 20.11

Oracle 
(100 hrs labeled + 500 hrs unlabeled) 3.83 11.28

WERR Clean Test Set WERR Noisy Test Set WERR
Pseudo-label Ensemble

(100 hrs labeled + 360 hrs unlabeled) 59.3% 67.4%

Pseudo-label Ensemble
(100 hrs labeled + 500 hrs unlabeled) 44.0% 53.9%



Results — Recovery Rates
33

[9] Hori et al. Cycle-consistency training for end-to-end speech recognition, ICASSP 2019 
[10] Karthick et al. Semi-supervised sequence-to-sequence ASR using unpaired speech and text, Interspeech 2019

1Results

Method
No LM With LM

Dev WER Test WER (WRR) Dev WER Test WER (WRR)
clean other clean other clean other clean other

Baseline Paired 100hr 14.00 37.02 14.85 39.95 7.78 28.15 8.06 30.44

Paired 100hr + Unpaired 360hr clean speech

Oracle 7.20 25.32 7.99 26.59 3.98 17.00 4.23 17.36
Single Pseudo 9.61 29.72 10.27 (66.8%) 30.50 (70.7%) 5.84 21.86 6.46 (41.8%) 22.90 (57.6%)
Ensemble (5 models) 9.00 27.74 9.62 (76.2%) 29.53 (78.0%) 5.41 20.31 5.79 (59.3%) 21.63 (67.4%)

Paired 100hr + Unpaired 500hr noisy speech

Oracle 6.90 17.55 7.09 18.36 3.74 10.49 3.83 11.28
Single Pseudo 10.90 28.37 11.48 (43.4%) 29.73 (47.3%) 6.38 19.98 6.56 (35.5%) 22.09 (43.6%)
Ensemble (4 models) 10.41 27.00 10.50 (56.1%) 29.25 (49.6%) 6.01 18.95 6.20 (44.0%) 20.11 (53.9%)

Table 1. Best results from single runs tuned on the dev sets. The best filtering setup found in Section 4.3.1 is applied.

No LM With LM

Method Text Test clean Test clean
(# words) WER (WRR) WER (WRR)

Cycle TTE [9] 4.8M 21.5 (27.6%) 19.5 (30.6%⇤)
ASR+TTS [10] 3.6M 17.5 (38.0%) 16.6 (-)
this work 842.5M 9.62 (76.2%) 5.79 (59.3%)

Table 2. A comparison with previous work using 100hr
paired data and 360hr unpaired audio. WRR is computed with
the baseline and oracle WER from the original work if avail-
able. (⇤: The oracle WER is without LM decoding, so the
WRR is an upper bound estimation.)

scriptions. We present results from both AM only greedy
decoding and LM beam search decoding to demonstrate the
full potential of self-training. In addition to WER, we report
WER recovery rate (WRR) [11] to demonstrate how much
gap between the baseline and the oracle that we can bridge
with pseudo-labels. WRR is defined as

baseline WER � semi-supervised WER
baseline WER � oracle WER

.

When decoded with an external LM, our best model achieves
a WRR over 50% in both clean and noisy speech settings.

Table 2 compares our approach with other semi-supervised
learning methods with sequence-to-sequence models that use
the same audio data setup. We see that our conventional
pseudo-labelling approach together with filtering and ensem-
ble produces a WER at least 65.1% relatively lower than
the previously best results. The gain comes from the strong
baseline model with TDS-based encoders [3] to generate the
pseudo-labels, and a much larger unpaired text corpus, which
we believe is easy to obtain in a real-world setting. As a com-
parison, the baseline WER on the test clean set is above 20
in [9, 10]. However, even with a strong baseline, we achieve
a WRR at least 93.8% relatively higher than other methods.

5. RELATED WORK
In speech recognition, self-training has been explored in hy-
brid systems [4–7, 19]. Prior work mainly focuses on dif-
ferent ways of data filtering to improve pseudo-label qual-
ity, e.g. confidence-based filtering [4,5] and agreement-based
selection [20], which also takes advantage of multiple sys-
tems. The data selection process can take place at different
levels ranging from frames to utterances [6, 7]. In [21], the
output probability of a teacher model is used as soft pseudo-
labels to train a student model. Training with pseudo-labels
can give an improvement to WER not only for low-resource
languages [6, 7] but also on large-scale data sets [21].

Recently-proposed semi-supervised approaches for end-
to-end speech recognition take advantage of text-to-speech
(TTS) modules to generate synthetic data from unpaired
text [22] or introduce a cycle-consistency loss between the
input and the output of an ASR+TTS pipeline [9, 10]. Al-
ternatively, inter-domain loss is proposed to constrain speech
and text in the same embedding space [23]. In this work,
we demonstrate that the self-training approach is simple yet
effective with end-to-end systems.

6. CONCLUSION
We have shown that self-training can yield substantial im-
provements for end-to-end systems over a strong baseline
model by leveraging a large unlabelled data set. We show
that filtering mechanisms tailored to the types of mistakes
encountered with sequence-to-sequence models as well as
an ensemble of models can further improve the accuracy
gains from self-training. Our experiments on LibriSpeech
have set forth a strong baseline model and a reproducible
semi-supervised learning setting for which new and more
sophisticated approaches can be evaluated.
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• 100 hours of paired audio, 360 hours 
of clean unpaired audio. 

- WRR = word error rate recovery 
• Computed using an oracle that does not include 

LM decoding.
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Outline

Results 

WER on LibriSpeech 
datasets with pseudo-
labeling, improving on prior 
results.

Self-Training in 
End-to-End ASR 

Motivating/defining the 
pipeline and related work.

Baseline Acoustic 
and Language 
Model, Filtering, and 
Ensembles 

Key components for sequence-
to-sequence models.

Future Work 

Extending self-training-
style techniques in speech.



Iterative pseudo-labeling. 

Can we generate higher-quality 
pseudo-labels using a model 
already bootstrapped on 
pseudo-labels?

More continuous 
relaxations/integration of 
language model information. 

The language model helps — 
can information from it be 
integrated more continuously 
during training?

Increasing the amount of 
unlabeled audio. 

Performance deteriorated 
when too many pseudo-labels 
was filtered — can using 
unlabeled audio mitigate this?
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Increasing the quality of the 
baseline model. 

Does a significantly better 
baseline model generate better 
pseudo-labels?

Future Work
1Future Work

Extending self-training and semi-supervision with unlabeled audio and an external LM.



Thanks!
Reproduce: github.com/facebookresearch/wav2letter → recipes/models/self_training


