dMazeRunner: Optimizing Convolutions on Dataflow Accelerators

Shail Dave¹, Aviral Shrivastava¹, Youngbin Kim², Sasikanth Avancha³, Kyoungwoo Lee²

[1] Compiler Microarchitecture Lab, Arizona State University[2] Department of Computer Science, Yonsei University[3] Parallel Computing Lab, Intel Labs

45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020)

Must-Accelerate Applications in ML Era

Widely Used ML Models

lopt lyer Hidden liver Output lyer

http://yann.lecun.com/exdb/lenet/

and LeNet 5 meseamer

721

Sequence Models

Multi Layer Perceptrons

http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-ofseq2seq-models-with-attention/ https://deeplearning.mit.edu/

Reinforcement Learning

AlphaGo. https://www.nature.com /articles/nature24270 Convolution Neural Networks

http://visiono3.csail.mit.edu/cnn_art/index.html https://pjreddie.com/darknet/

Graph Neural Networks

Points of Interest Delaunay Triangulation

YOW! Data 2018 Conference. https://www.youtube.com/watch?v=IDRb3CjESmM

Popular Applications

- Object Classification/Detection
- Media Processing/Generation
- Large-Scale Scientific Computing

https://giphy.com

Tropical Cyclon Detection https://insidehpc.com/2019/02/gordon-bellprize-highlights-the-impact-of-ai/

Designing Software 2.0

Google shrinks language translation code from 500k LoC to 500

Designing Computer Systems for Software 2.0. Kunle Olukotun, NeurIPS 2018 Invited talk.

and more ...

Compute Intensive, Needs Energy-efficient Acceleration

2

Dataflow Accelerators: Promising Solution

Known variations include - Systolic Arrays,

- Spatially Programmable Architecture,
- Coarse-Grain Reconfigurable Array (CGRA)
- Massive arrays of processing elements (PEs).
 - Simple: absence of complex out-of-order pipeline and decoding.
 - Programmable: accommodate executing all operations within a loop.
- Private and shared memory for PEs sustain data reuse.
- PEs can be busy performing computations while data is being communicated from lower memories.

[1] Norman Jouppi et al. In-datacenter performance analysis of a tensor processing unit. In ISCA 2017.
[2] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep cnns. In JSSC 2016.
[3] Kamran Khan. 2018. Xilinx DNN Processor (xDNN), Accelerating AI in Datacenters.
[4] Bruce Fleischer et al., A Scalable Multi-TeraOPS Core for AI Training and Inference. In VLSI 2018.
[5] Dataflow Processing Unit from Wave Computing. In HOTCHIPS 2017.
[6] M. Thottethodi and T. N. Vijaykumar. Why GPGPU is Less Efficient than TPU for DNNs. ACM SIGARCH Blog, Jan 2019. (online)

C^ML

Mapping Computation in Space and Time

Vast "Execution Method" Space

- Many many ways to execute nested loops (of DNN) on a dataflow accelerator
 - Both software and hardware design space
 - Hardware: Size, layout, and connectivity of PEs, size of onchip buffer and registers, etc.
 - Software: loop mappings, e.g.,
 Spatial: parallelism, data reuse,
 Temporal: ordering and tiling of the loops, data reuse, data
 buffering, etc.

4D Convolution: Hardware Accelerator for n=1:N % batch size for m=1:M % filters Concurrent L1 for c=1:C% channels Accesses for ox=1:0x % rows of ofmap Execution % columns of ofmap for ov=1:0v on PEs % filter height for fx=1:Fx for fy=1:Fy % filter width O[n][m][ox][oy] += L2 Scratch-Pad I[n][c][ox+fx-1][oy+fy-1]* Accesses Memory W[m][c][fx][fv]; <N,M,C,Ox,Oy,Fx,Fy> =L3 <1,512,256,7,7,3,3> DRAM Accesses 1 ifmap 1 ofmap 9x9 * 256 512 7x7x512 9x9x256 filters (padded) Stride=1 256 3x3x256 Conv5_1 [ResNet]

dMazeRunner Demo

Framework Features

Estimate performance and energy-efficiency of individual execution method for a specified accelerator hardware and layer dimensions

Optimize specific or all layers of common CNN networks

Release: https://github.com/MPSLab-ASU/dMazeRunner

Execution Modeling of Dataflow Accelerators

Features with detailed modeling of

✓ Analyze arbitrary perfectly nested loops.

\checkmark miss penalty and stall cycles

(during PE execution and in managing PE's local or shared memory).

\checkmark inter-PE communication.

- ✓ temporal/spatial data reuse.
- ✓ Integrated support common

ML libraries MXNet/Keras/...

(thanks TVM! – leveraging front-end)

Step-wise equations and analysis: Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, Aviral Shrivastava, dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators [CODES+ISSS, TECS 2019].

Validation against DNN Optimizer of Yang et al.

Yang, Xuan, M. Gao, J. Pu, A. Nayak, Q. Liu, S. Bell, J. Setter, K. Cao, H. Ha, Christos Kozyrakis, and Mark Horowitz. "DNN Dataflow Choice Is Overrated." [arXiv '18]

- Energy estimate differs by ~4.2% for variety of execution methods.
- For efficient mappings, major energy spent in RF accesses.

Optimizing Multiple Dataflows

Executing ResNet layers on a 256-PE, 512B RF, 128kB SPM dataflow accelerator

Adaptable Mappings Yield Better Results

- Adapts to layer / hardware architecture characteristics
 - Scales for layers and tensors of different shapes
- Finds non-intuitive mappings that are optimized for various key factors e.g.,
 - ✓ High Resource (PE/memories) Utilization
 - ✓ Maximized Reuse of Multiple Tensors
 - ✓ Minimized DRAM accesses
 - Hiding Communication Latency Behind Computations on PEs

Example Mapping of ResNet Conv5_2 with Output Stationary Dataflow

For data allocated in RFs of PEs,	мос	dMazeRunner
PE Compute vs. Data comm. Latency:	144 vs. 648	576 vs. 576
Total cycles:	~10,616,83	2 ~2,459,648
Ideal execution cycles for output-stationary:	2,359,29	6 2,359,296
Reduction in DRAM accesses (ifmaps, weights):	(1X, 1X)	(4 . 57x, 2x)
Perf. improvement (normalized to MOC):	1X	4.44X
Energy-Delay-Product reduction (normalized):	1X	9.86x

MOC: Simultaneous spatial processing of Multiple Output Channels [1] S. Gupta et al. Deep learning with limited numerical precision. In ICML, 2015. [2] Y. Chen et al. Eyeriss: A spatial architecture for energy-efficient dataflow

for CNNs. In ISCA 2016.

Achieving Close-to-Optimal Solutions in Seconds

Search Space Reduction for DNN Optimizations

ResNet Conv Layers	Loop Tilings	Loop Orderings	dMzRnr explored Tilings	dMzRnr explored Orderings
1	1.2E+08	7!×7!	46812	3×3
2_2	1.1E+09	7!×7!	122092	3×3
3_2	6.2E+08	7!×7!	53690	3×3
4_2	1.8E+08	7!×7!	10938	3×3
5_1	1.4E+07	7!×7!	877	3×3
5_2	1.7E+07	7!×7!	753	3×3

Even domain non-experts can explore the space

python run_optimizer.py --frontend mxnet --model resnet18 --layer-index 0

• **Does not preclude experts**/programmers from directing the search.

Search Space Exploration on an Intel i7-6700 Quad-core CPU min: ~1 second, ResNet conv5_2 (753*9 methods) max: ~122 seconds, ResNet conv2_2 (122092*9 methods)

AlexNet and ResNet18 models in about 18 and 180 seconds, respectively

- Quick exploration:
 - In-built support for a few common opt strategies.
 - Implementation multi-threaded, caches commonly invoked routines of analytical model.
 - Enables effective Design Space Exploration of architecture, e.g., explore impact of scaling PEs and memory sizes on performance and energy efficiency.

Conclusions

- Dataflow accelerators: promising for accelerating ML applications.
- Need to determine efficient "execution method" for spatiotemporal executions on dataflow accelerators.
- dMazeRunner: Automated, succinct, and fast exploration of mapping search space and architecture design space.
- Adaptive and non-intuitive mappings enable efficient dataflow acceleration.

[Release] https://github.com/MPSLab-ASU/dMazeRunner [Project] https://labs.engineering.asu.edu/mps-lab/ml-accelerators

