

Learning to Fool the Speaker Recognition

ICASSP 2020

^{1,4}Jiguo Li, <u>jiguo.li@</u>vipl.ict.ac.cn

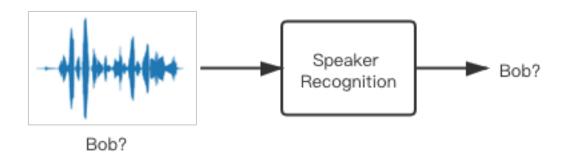
Joint work with ⁴Xinfeng Zhang, ³Jizheng Xu, ³Li Zhang, ³Yue Wang, ²Siwei Ma, ²Wen Gao

¹Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS)

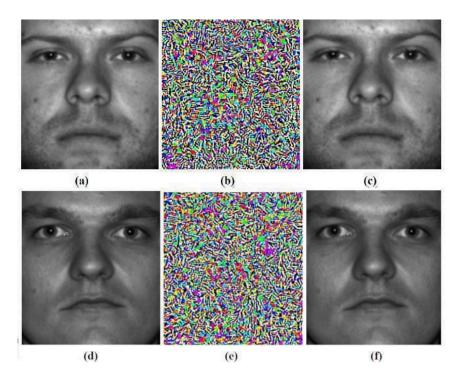
²Institute of Digital Media(IDM), Peking University(PKU)

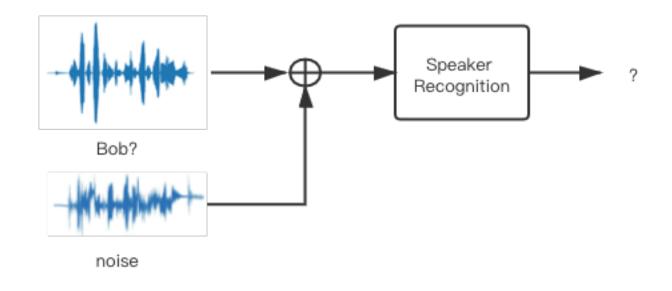
³Bytedance.Inc

⁴University of Chinese Academy of Science(UCAS)


Biometric Systems

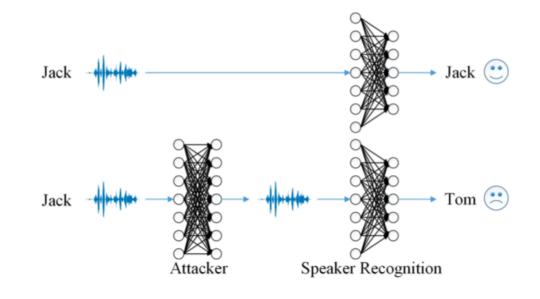
- Image-based Systems
 - ✓ Face, fingerprint


- Speech-based Systems
 - ✓ Speaker recognition



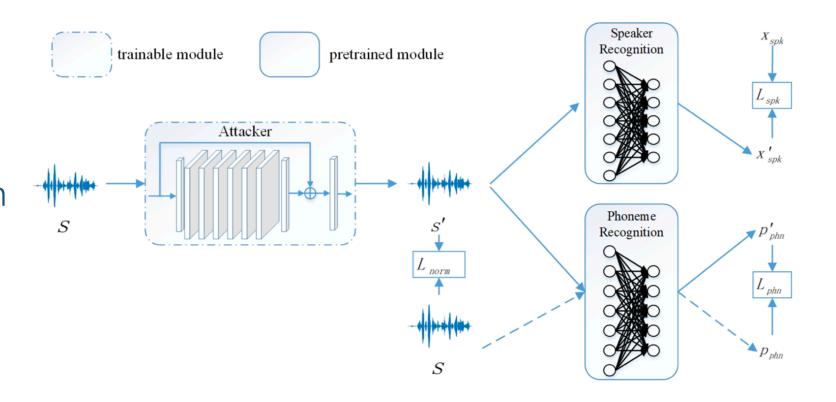
Security Risks for Biometric Systems

- Image-based Systems
 - ✓ Face attack


- Speech-based Systems
 - ✓ Speech attack

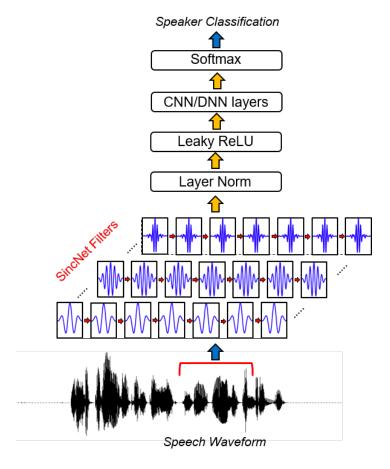
Motivation

- ◆How to attack the speech-based biometric systems?
- ◆Is the speech-based biometric systems vulnerable to the adversaria attack?
- ◆ Is it possible to design a biometric systems robust to the adversarial attack?



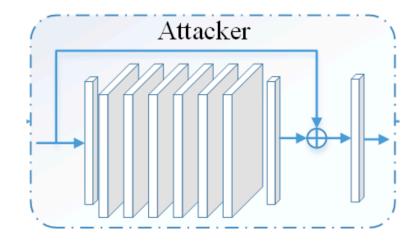
Our attack results

Targeted attack Non-targeted attack dr1/fcjf0/si1027.ogg dr1/fcjf0/si1027.ogg dr1/fcjf0/sx37.ogg dr1/fdaw0/si1046.ogg dr2/faem0/si762.ogg dr2/faem0/si762.ogg dr8/fbcg1/si982.ogg dr8/fbcg1/sx82.ogg (3)) fake real target0 target100 target200 real



- **♦**Our Framework
 - ✓ An attacker for all samples
 - ✓ Optimize the speechvia phonemerecognition module

- ◆Speaker/Phoneme Recognition Model: Sincnet[1]
 - ✓ Frequency filters in the first layer
 - ✓ Process on the raw waveform
 - ✓ More interpretable



- ◆Attacker: a Residual Block
 - ✓ Referring to Adversarial Transformer Networks (ATNs)[1]
 - ✓ Additive perturbations
 - ✓ The scale of the perturbation is controllable
 - ✓ Training once for all testing samples

- Adversarial training/Optimization
 - ✓ Non-targeted attack

$$L_{total} = L_{spk} + \lambda_{phn}L_{phn} + \lambda_{norm}L_{norm}$$

$$L_{spk} = \begin{cases} x'_{spk}[I_{1st}] - x'_{spk}[I_{2nd}], I_{1st} = y_{spk} \\ 0, & else \end{cases}$$

$$L_{phn} = KL(p_{phn}||p'_{phn})$$

$$L_{norm} = [\max(s - s' - m, 0)]^2$$

✓ Targeted attack

$$L_{spk} = \begin{cases} x'_{spk}[I_{1st}] - x'_{spk}[y_{target}], I_{1st} \neq y_{target} \\ 0, & else \end{cases}$$

- Datasets and Metrics
 - ✓ Dataset

Dataset	Label	Speaker number	Samples (train+test)
TIMIT	Speaker+phoneme	462	3694(2309+1385)

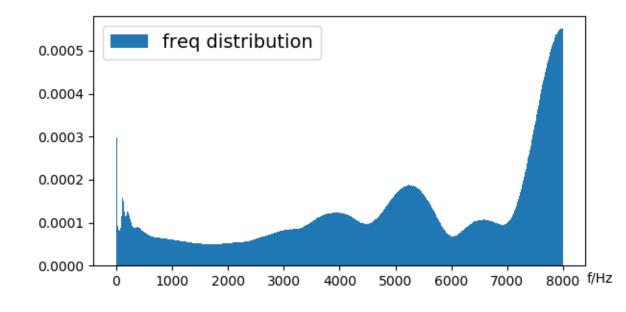
- ✓ Metric
 - ➤ Sentence Error Rate(SER): used for non-targeted attack
 - ➤ Prediction Target Rate(PTR): used for targeted attack
 - ➤ Signal-noise Ratio(SNR)
 - ➤ Perceptual Evaluation of Speech Quality(PESQ): 0.5~4.5

- Can our proposed model attack the pretrained speaker recognition model?
 - ✓ Non-targeted attack
 - ✓ SER 90.5% with SNR 59.01 dB
 - ✓ SER 90.5% with PESQ 4.28

λ_{phn}	λ_{norm}	SER(%)↑	SNR(dB)↑	PESQ↑
-	-	1.52*	-	-
0	0	99.7	18.56	1.09
0	1000	96.5	56.39	3.72
0	2000	86.7	57.79	3.61
1	1000	99.2	57.20	4.20
5	1000	93.9	58.00	4.25
10	1000	90.5	59.01	4.28

- Can our proposed model attack the pretrained speaker recognition model?
 - ✓ Targeted attack
 - ✓ Average success rate 72.1%
 - ✓ Average SNR 57.64dB
 - ✓ Average PESQ 3.48

Target ID	PTR(%)↑	SNR(dB)↑	PESQ↑
0	91.4	57.55	3.36
100	89.3	56.83	3.16
200	63.3	58.42	3.69
300	58.7	56.92	3.52
400	57.6	58.36	3.68
avg	72.1	57.64	3.48



- ◆Does our design work? (the phoneme recognition model)
 - ✓ With fixed λ_{norm} , larger λ_{phn} results a higher SNR and PESQ
 - ✓ The phoneme brunch works for obtaining a trade-off between SER and SNR/PES

λ_{phn}	λ_{norm}	SER(%)↑	SNR(dB)↑	PESQ↑
-	-	1.52*	-	-
0	0	99.7	18.56	1.09
0	1000	96.5	56.39	3.72
0	2000	86.7	57.79	3.61
1	1000	99.2	57.20	4.20
5	1000	93.9	58.00	4.25
10	1000	90.5	59.01	4.28

- ◆Other findings
 - ✓ The perturbations concentrate on high frequency
 - ✓ Can we design robust speaker recognition models focusing on the low frequency? (future works)

Perturbations distribution

The questions

- ◆How to attack the speech-based biometric systems?
 - ✓Our proposed framework successfully attacked the SOTA speaker recognition model
- ◆ Is the speech-based biometric systems vulnerable to the attacker?
 - ✓ Yes
- ◆Is it possible to design a biometric systems robust to the adversarial attack?
 - ✓ The future works

Thanks

Q & A

Codes, data and more results: https://smallflyingpig.github.io/speaker-recognition-attacker/main
Paper early access: https://ieeexplore.ieee.org/document/9053058

