

Semantic Preserving Image Compression ICIP 2020

Session: COM-01

Presenter: Nilesh Ahuja

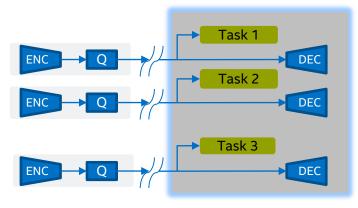

Authors: Neel Patwa (Intel¹), Nilesh Ahuja (Intel), Omesh Tickoo (Intel), Srinivasa Somayazulu (Intel), Srenivas Varadarajan (Samsung²), Shashidhar Koolagudi (NIT Karnataka)

¹Presently at Qualcomm ²Was at Intel Labs during this research

Intel Labs

Motivation: Enabling Distributed Analytics in Visual IoT space

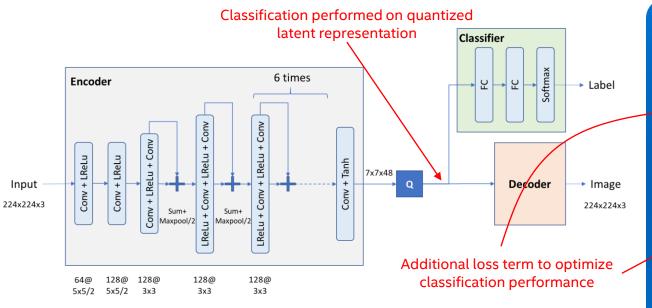
Current analytics pipeline in Visual IoT


- In Visual Internet of Things (IoT) space, large amounts of visual data captured by lowpower mobile/client devices needs to be transferred to the cloud for processing and analysis.
- Standard lossy compression techniques optimize perceptual quality rather than performance on visual analytic tasks

Problem Statement

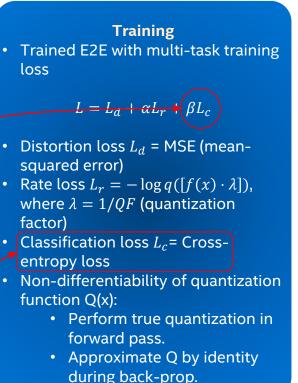
Compression of visual content to maximize performance on a visual analytic task (e.g. classification, detection, etc.)

Proposed Approach: ML-Based Compression


Proposed analytics pipeline

Machine-learning Based Compression

- Learn optimal representations for a given task.
- Task can be performed directly on learned representation without decoding
- Use of task-specific distortion measures allows rate-distortion optimization for that task



Semantic Preserving Image Compression

Convolutional Autoencoder architecture

- $N@M \times M/S = N$ channels, kernel-size $M \times M$, stride S.
- LReLu = leaky ReLu.
- Q = Quantization + lossless (Huffman) encoding

Experimental Setup

- Measure classification accuracy as a function of compression level indicated by bits-per-pixel (BPP)
- Dataset: ImageNet
- Baselines:
 - Classification accuracy on JPEGcompressed images on three different architectures: ResNet, VGG19, and our architecture.

• DeepSIC¹

¹Sihui Luo, Yezhou Yang, Yanling Yin, Chengchao Shen, Ya Zhao, and Mingli Song, "DeepSIC: Deep semantic image compression," in *International Conference* on Neural Information Processing. Springer, 2018, pp. 96–106

SPIC QF JPEG QF Avg BPP 128 46 0.143 48 30 0.112

16

To enable a fair comparison, the quantization levels for both JPEG and SPIC are adjusted so that average BPP across test-set is same for both.

25

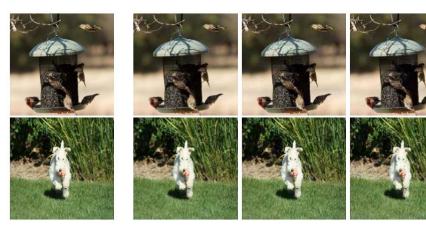

0.100

Table of Quantization Factors

RESULTS

Reconstruction Performance: ImageNet

0.143 BPP 0.112 BPP 0.100 BPP 0.143 BPP 0.112 BPP 0.100 BPP Original JPEG compressed SPIC compressed (Our approach)

Reconstruction Performance: Kodak CD

Original

BPP 0.136 SSIM=0.888

Original

BPP=0.143 SSIM=0.819

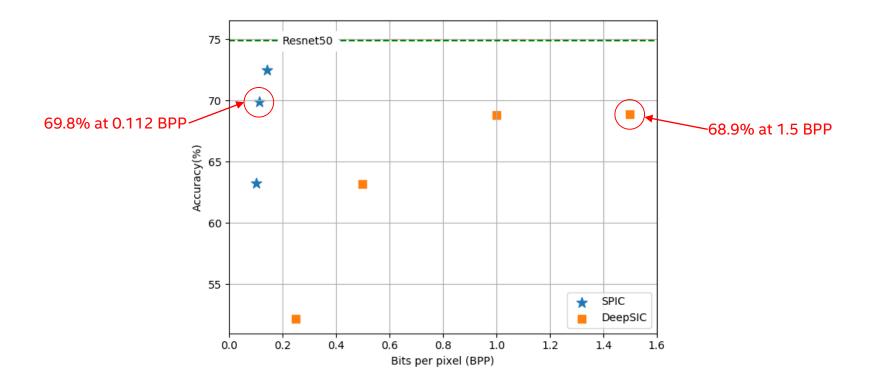
Quality of reconstructed images is good despite the images being from a completely different dataset!

SPIC vs JPEG

BPP	With SPIC-Q	With JPEG Compression		
		SPIC-U	Resnet50	VGG19
N/A	73.31	73.31	74.9	71.3
0.143	72.51	66.31	65.27	63.16
0.112	69.86	63.01	62.59	60.88
0.100	63.27	60.93	61.13	59.42

Classification accuracy at various compression levels

- SPIC outperforms JPEG across all compression levels on all tested architectures.
- Visual quality of the images reconstructed by our method is lower than that of JPEG


Quality of image reconstruction

BPP	SPIC		JPEG	
211	SSIM	PSNR	SSIM	PSNR
0.143	0.847	22.28	0.921	23.7 4
0.112	0.815	21.54	0.901	22.58
0.100	0.741		0.891	

Supports our original hypothesis that perceptually-significant visual features might not be the most suitable for classification tasks

SPIC vs DeepSIC

Intel Confidential

Future Work

- Explore various autoencoder architecture (e.g. RNNs).
- Adaptive, task-aware latent-space decomposition
- Use of more sophisticated lossless coding schemes (arithmetic coding) to reduce the bit rate
- Extending the concept to other tasks like such as object detection and tracking.

11

Thank You !