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Object Detection in Autonomous Vehicles

Need to be:
e Highly accurate
° Fast
e Reliable
e Affordable
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Object Detection in Autonomous Vehicles

Need to be:
e Highly accurate
° Fast
e Reliable
e Affordable

Commonly Used Sensor: Camera
e High resolution, High accuracy.

e But not Reliable.
o  Sensitive towards Noise like reflection, sun glare, bad lighting, dusty or rainy weather conditions etc.
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e High resolution, Fast, High accuracy.
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Other Sensors:

e LIDAR: High resolution, 3D detection, but Sensitive towards Noise & Expensive.
e Radar: Low resolution, sparse data, but Robust towards noise, Long range & Low cost.
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Impact of Noise on Vision based Detection Networks

+Noise

Detection Results on image Detection Results on image
with no extra Noise -Performance with extra Noise
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Proposed Solution

(RGB + Radar) Fusion
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Radar Sensor

Radar Sensor Data:

e Radar points(x,y,z)

e Point at interesting objects : h e 2P

e Robust _ e 2 R o

e Sparse 03 ;-*- e
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Radar +RGB Sensor Fusion: — e i ‘

1.  Attentive Feature Level :

Fusion

2. Data Level Fusion

Image with superimposed radar data.
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RGB Camera Input

Classification
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Two-Stage Object Detector with Camera Input

Detection Output
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Radar Attentive Feature level Fusion
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Radar Data Level Fusion
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Other Addition
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Other Addition
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Two Fusion Networks Proposed:

RANet(RAdar Network):

e Radar point based anchors only

BIRANet(Best of RGB Image and RAdar Network):

e Vision(FFPN) + Radar point based anchors

e Best of Two Method:
e Calculate IOU of both radar and vision based anchors with each ground truth bounding box
e Select the anchor with highest IOU
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Dataset

NuScenes(Training & Evaluation):

e 900 x 1600 image resolution
e 32254 training image and 5782 validation images

e Evaluation Set:

= Eval 1: Default NuScenes evaluation set
= Eval 2, 3, 4: NuScenes evaluation set with small, medium and large amount of augmented noise
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Quantitative Comparison
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Note: Base Network : FFPN(Faster R-CNN with Feature Pyramid Network), Proposed Networks : RANet & BIRANet.
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Result comparison on Image Resolution Scale

Resolution Drop 1024x1024 ———p 512x512
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BIRANet Evaluation on Image Resolution Scale

Resolution Drop 1024x1024 ———p 512x512
Eval 1 Eval 4

AP & AR Drop ~4% ~1%

Inference Time Drop 55% 55%

If High Noise — Processing low-resolution images is a better option.

18 rrlab.cs.uni-kl.de




THE ROBOTICS RESEARCH LAB

Qualitative Results: Dpetection Comparison on Eval 1.

BIRANet
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Qualitative Results: Dpetection Comparison on Eval 4.
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Comparison with Existing Methods

e RRPN : RANetis 26% and BIRANet is 29.8% better.

e RVNet, CRF-Net : RANet is 8.7 % and BIRANet is 12.7% better.

80

% mAP on 1024X1024 Images
% mAP on 512X512 Images

RRPN RANet BIRANet RVNet CRF-Net RANet BIRANet
Networks Networks

RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles, RVNet: Deep Sensor Fusion of Monocular Camera and Radar for Image-Based Obstacle Detection
in Challenging Environments, CRF-Net: A Deep Learning-based Radar and Camera Sensor Fusion Architecture for Object Detection.

21 rrlab.cs.uni-kl.de




THE ROBOTICS RESEARCH LAB

Thank You.

Front - Camera Detection
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