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Hyperspectral Imaging (HSI) 

Direct (physical) spectral measurements

*Chang, C. I. Hyperspectral imaging: techniques for spectral detection and classification (Vol. 1). Springer Science & Business Media, 2003

**Mehta N et.al. Single-Cell Analysis Using Hyperspectral Imaging Modalities. ASME. J Biomech Eng. 2018;140(2):020802

AVIRIS - Airborne Visible 

InfraRed Imaging spectrometer

Typical HSI system employs filters for wavelength separation
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Hyperspectral Phase Imaging –indirect spectral measurements,  

Computational spectral analysis.

Phase, Why and What for ?

(1) Digital holography HSI with the reference beam

(2)  Phase retrieval HSI  without the reference beam
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𝑱 𝒕 = න
𝟎

∞

𝑨 𝝎 +𝑹𝐞𝐱𝐩 𝟐𝝅𝝎𝒕 𝟐𝒅𝝎 =

න
𝟎

∞

൯൫ 𝑨 𝝎 𝟐 + 𝑹𝟐 + 𝟐 𝑨 𝝎 × 𝑹 cos ሻሺ𝝋𝑨 𝝎 − 𝟐 𝝅𝝎𝒕 𝒅𝝎

where 𝑨 𝝎 is a complex-valued transfer function of the object (for transparent object) to be 

analyzed with the amplitude 𝑨 𝝎 and the phase 𝝋𝑨 𝝎 , 𝑨 𝝎 = 𝑨 𝝎 𝐞𝐱𝐩ሺ𝐣 𝝋𝑨 𝝎 ሻ.

𝟐 ׬
𝟎

∞
𝑨 𝝎 𝟐 𝟏 + 𝒄𝒐𝒔 𝟐𝝅𝝎𝒕 𝒅𝝎.

𝑱 𝒕 = න
𝟎

∞

𝑨 𝝎 + 𝑨 𝝎 𝐞𝐱𝐩 𝟐𝝅𝝎𝒕 𝟐𝒅𝝎 =

Fourier Spectroscopy
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Problem formulation (1)

1. Object to be reconstructed: 

𝑼𝟎 𝒙, 𝒚, 𝒌 ∈ ℂ𝒏×𝒎 is a 2D slice  of 3D cube  𝑸𝑲 𝒙, 𝒚 = {𝑼𝟎 𝒙, 𝒚, 𝒌 , 𝒌 ∈ 𝑲}.
The total size of the cube is 𝑛 ×𝑚 × 𝑙𝐾 ,
where 𝒌 denotes the spectral components of the length 𝑙𝐾.

2. Intensity measurements:      𝒀𝒕 = σ𝒌∈𝑲 𝑼𝒕,𝒌
𝟐
, 𝑼𝒕,𝒌 = 𝑨𝒕,𝒌𝑼𝒐,𝒌, 𝒕 ∈ 𝑻. 

Here and what follows, we use the vectorized representation for slices 𝑼𝟎,𝒌 ∈ ℂ𝑵, 𝑵 = 𝒏 ×𝒎, and 

𝑨𝒕,𝒌 ∈ ℂ𝑴×𝑵 are linear operators of image formation object images from the object plane to the

sensor plane.

3. HS phase retrieval problem:

Reconstruction of the complex-valued cube 𝑸𝑲 𝒙, 𝒚 from noisy intensity observations:
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𝒁𝒕 = 𝒀𝒕 + 𝜺𝒕 , 𝒕 ∈ 𝑻. 
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This intensity can be presented in the form 

where 𝑩𝒌= 𝑨𝒌𝑼𝒐,𝒌 and 𝑵 is a number of experiments on varying 𝒕.

|  7

Problem formulation (2)

We restrict the class of the operators 𝑨𝒕,𝒌 to the form  appeared in Fourier Spectroscopy

with the measured intensities 𝒀𝒕 of the from:

𝒀𝒕 = σ𝒌∈𝑲 𝑨𝒕,𝒌𝑼𝒐,𝒌
𝟐

, 𝑨𝒕,𝒌 = 1 + 𝑒−
𝟐𝝅

𝑵
𝑗𝒌𝑡 𝑨𝒌, 𝒕 ∈ 𝑻.

For noisy intensity observations 𝒁𝒕 = 𝒀𝒕 + 𝜺𝒕, 𝒕 ∈ 𝑻 , where 𝜺𝒕 ~ 𝜨(0,σ)

𝒀𝒕 = 𝟐σ𝒌∈𝑲 𝟏 + 𝒄𝒐𝒔
𝟐𝝅

𝑵
𝒌𝒕 𝑩𝒌

𝟐, 𝒕 ∈ 𝑻,
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Algorithm development (1)

Criterion

The first summand is a fidelity term for Gaussian noise. 

The last one is a penalty formalizing a non-local patch-wise complex-domain sparsity for the object 

cube images. 

The second summand penalizes residuals between the splitting variable 𝑩𝒌 and 𝑨𝒌𝑼𝒐,𝒌.

The developed algorithm of iterates 𝒎𝒊𝒏{𝑩𝒌} 𝑱 on 𝑩𝒌 provided given 𝑼𝒐,𝒌 𝟏

𝑵

𝟐
−𝟏

and 𝒎𝒊𝒏 𝑼𝒐,𝒌
𝑱

provided given {𝑩𝒌 }.
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𝑱 ≜
𝟏

𝝈𝟐
෍

𝒕=𝟎

𝑵−𝟏

𝒁𝒕 − 𝟐෍

𝒌=𝟎

𝑵
𝟐
−𝟏

|𝑩𝒌|
𝟐 𝟏 + 𝒄𝒐𝒔

𝟐𝝅

𝑵
𝒌𝒕

𝟐

𝟐

+ 𝟏/𝜸෍

𝒌=𝟏

𝑵
𝟐
−𝟏

𝑩𝒌 − 𝑨𝒌𝑼𝒐,𝒌 𝟐

𝟐
+ 𝒇𝒓𝒆𝒈 𝑼𝒐,𝒌 𝟏

𝑵
𝟐
−𝟏

.
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(1) Minimization on 𝑩𝒌

With the solution for 𝑩𝒍 of the form for the phase and amplitude, respectively:

Important features of this solution:

(1) It produces the spectral analysis giving the complex-valued spectral estimates from intensity measurements;

(2) Filters the Gaussian noise in observations (can be done for Poissonian noise);

(3) This solution can be interpreted as an original proximity operator 𝑩𝝀
ሺ𝒔ሻ
= 𝒑𝒓𝒐𝒙𝒇𝜸 𝑨𝒍𝑼𝒐,𝒍 , 𝑙 = 1, … ,

𝑁

2
− 1,

where 𝒇 stays for the fidelity term of the criterion 𝑱.
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For minimization 𝒎𝒊𝒏{𝑩𝒌}𝑱, we solve the equations
𝝏𝑱

𝝏𝑩𝒍
∗ = 𝟎, 𝑙 = 1,… ,

𝑁

2
− 1

−
𝟒

𝝈𝟐
෍

𝒕=𝟎

𝑵−𝟏

𝒁𝒕𝐜𝐨𝐬
𝟐𝝅

𝑵
𝒌𝒕 +

𝟒𝑵

𝝈𝟐
𝑩𝒍

𝟐 +
𝟏

𝜸
𝑩𝒍 =

𝟏

𝜸
𝑨𝒍𝑼𝒐,𝒍.

−
𝟒

𝝈𝟐
෍

𝒕=𝟎

𝑵−𝟏

𝒁𝒕𝐜𝐨𝐬
𝟐𝝅

𝑵
𝒌𝒕 +

𝟒𝑵

𝝈𝟐
𝑩𝒍

𝟐 +
𝟏

𝜸
|𝑩𝒍| −

𝟏

𝜸
|𝑨𝒍𝑼𝒐,𝒍| = 𝟎.

𝝋𝑩𝒍 = 𝝋𝑨𝒍𝑼𝒐,𝒍;

Algorithm development (2)

Non-negative solutions of the cubic polynomial equations calculated by Cardano formulas:
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(2) Minimization min 𝑼𝒐,𝒌
𝑱 defines regularization (filtering) of the HS cube in complex domain. 
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Instead of variational approach, we use the specially designed sparsity based filter for joint and 

separate filtering spectral slices of the HS object cube.

{෡𝑼𝒐,𝒌, 𝒌 ∈ 𝑲} = 𝑪𝑪𝑭{𝑼𝒐,𝒌, 𝒌 ∈ 𝑲}

Complex domain Cube Filter ሺ𝑪𝑪𝑭ሻ processes the cube data {𝑼𝒐,𝒌, 𝒌 ∈ 𝑲} jointly and provide the estimates

{෡𝑼𝒐,𝒌, 𝒌 ∈ 𝑲} for all 𝒌.

(a) The 𝑪𝑪𝑭 algorithm is based on SVD of the HS cube which identifies an optimal subspace for the HS 

image representation including both the dimension of the eigenspace and eigenimages in this space. 

(b) The Complex-Domain Block-Matching 3D (CDBM3D) algorithm filters this small number of eigenimages. 

Going from the eigenimage space back to the original image space we obtain the reconstruction of the object

cube {෡𝑼𝒐,𝒌, 𝒌 ∈ 𝑲}. 

Algorithm development (3)
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Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇⋅𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

Observations

𝑠 = 𝑠 + 1

𝒇𝒐𝒓 𝒔 = 𝟏, . . . , 𝒎𝒂𝒙𝒊𝒕𝒆𝒓

𝒔 == 𝒎𝒂𝒙𝒊𝒕𝒆𝒓

Iterative HyperSpectral Phase Retrieval Algorithm
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𝒁𝒕, t∈ 𝑻
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Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

Observations 

𝒔 = 𝒔 + 𝟏

𝐟𝐨𝐫 𝐬 = 𝟏, . . . , 𝐦𝐚𝐱𝐢𝐭𝐞𝐫

𝒆𝒏𝒅, 𝒔 == 𝒎𝒂𝒙𝒊𝒕𝒆𝒓

Iterative HyperSpectral Phase Retrieval Algorithm

Initialization

𝑼𝒐,𝝀
𝟎
ሺ𝒙, 𝒚ሻ = 𝑨𝝀

# 𝑽 𝒙, 𝒚, 𝝀 𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

Initial guess of object wavefronts

Here 𝑼𝒐,𝝀
ሺ𝟎ሻ

- object wavefront, superscript ሺ𝟎ሻ is for the 

initial iteration number;

subscripts 𝒐, 𝝀 are notations for object plane and 

wavelength, respectively;

𝑽 𝒙, 𝒚, 𝝀 (or 𝑽 𝝀 ) is the intensity spectra of 

observations;

𝑨𝝀
# 𝑽 𝒙, 𝒚, 𝝀 – backward propagation of 𝑽 𝒙, 𝒚, 𝝀

to the object plane;

superscript # stays for backward propagation;

𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ - multiplier for the phase guess, which is 

zero in our case.
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𝒁𝒕, t∈ 𝑻
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Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇⋅𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

𝑠 = 𝑠 + 1

𝒇𝒐𝒓 𝒔 = 𝟏, . . . , 𝒎𝒂𝒙𝒊𝒕𝒆𝒓

𝒔 == 𝒎𝒂𝒙𝒊𝒕𝒆𝒓

1. Image Formation (Forward 

propagation)

The Rayleigt-Sommerfeld integral solution)n in

Angular Spectrum  (AS) model is used:

𝑯ሺ𝒇𝒙, 𝒇𝒚, 𝒅ሻ= ൞
𝒆𝒙𝒑 𝒊

𝟐𝝅

𝝀
𝒅 𝟏 − 𝝀𝟐ሺ𝒇𝒙

𝟐 + 𝒇𝒚
𝟐ሻ , 𝒇𝒙

𝟐 + 𝒇𝒚
𝟐 ≤

𝟏

𝝀𝟐
,

𝟎 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝑼𝒐,𝝀
𝒔−𝟏

− object wavefront at obect’s plane,

𝑼𝒕,𝝀
ሺ𝒔ሻ

− object wavefront at sensor’s plane,

𝓕 and 𝓕-1 stay for the Fourier and inverse Fourier transforms,

𝒅 is a propagation distance,

𝒇𝒙 and 𝒇𝒚 are spatial frequencies,

𝝀 – wavelength.

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀 𝑼𝒐,𝝀
𝒔−𝟏

= 𝓕−𝟏 𝑯ሺ𝒇𝒙, 𝒇𝒚, 𝒅ሻ ⋅ 𝓕 𝑼𝒐,𝝀
𝒔−𝟏

𝒁𝒕, t∈ 𝑻

Observations

Iterative HyperSpectral Phase Retrieval Algorithm

The 27th IEEE International Conference on Image Processing, 2020 |  11



Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇⋅𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

𝒁𝒕, t∈ 𝑻

Observations

𝑠 = 𝑠 + 1

𝑓𝑜𝑟 𝑠 = 1, . . . , max𝑖𝑡𝑒𝑟

𝑠 == max𝑖𝑡𝑒𝑟

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇𝜸 𝑼𝒕,𝝀
𝒔

where 𝛾 > 0 is a relaxational parameter and 𝑓 stays for the minus

log-likelihood part of the criterion:

𝟏

𝛔𝟐
෍

𝐭=𝟎

𝐍−𝟏

𝐙𝐭 − 𝟐෍

𝐤=𝟎

𝐍
𝟐
−𝟏

|𝐁𝐤|
𝟐 𝟏 + 𝐜𝐨𝐬

𝟐𝛑

𝐍
𝐤𝐭

𝟐

𝟐

The proximity solution 𝑩𝝀
ሺ𝒔ሻ

resolves two problems:

1) Complex domain spectral components 𝑩𝒍 are extracted from the

intensity observations. Thus, we obtain the spectral analysis of

the observed intensities averaged over the wavelengths.

2) The noisy observations are filtered with the power controlled by

the parameter 𝜸 compromising the noisy observations 𝒁𝒕 and the

power of the predicted signal 𝑼𝒕,𝝀
𝒔

at the sensor plane.

Iterative HyperSpectral Phase Retrieval Algorithm
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Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇⋅𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

Observations

𝑠 = 𝑠 + 1

𝑓𝑜𝑟 𝑠 = 1, . . . , max𝑖𝑡𝑒𝑟

𝑠 == max𝑖𝑡𝑒𝑟

3. Backward propagation

Same Angular spectrum approach, but for backward 

propagation (#) the sign of the propagated distance 

is inverted. 

𝒁𝒕, t∈ 𝑻
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Output

𝑼𝒐,𝝀
ሺ𝒎𝒂𝒙𝒊𝒕𝒆𝒓ሻ, 𝝀 ∈ 𝚲

4. Merging and noise suppression

{𝑼𝒐,𝝀
ሺ𝒔ሻ
, 𝝀 ∈ 𝚲} = 𝑪𝑪𝑭{𝑼𝒐,𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲}

3. Backward propagation

𝑼𝒐,𝝀
ሺ𝒔ሻ

= 𝑨𝝀
#𝑩𝝀

ሺ𝒔ሻ
, 𝝀 ∈ 𝚲

2. Proximity operation

𝑩𝝀
ሺ𝒔ሻ

= 𝒑𝒓𝒐𝒙𝒇⋅𝜸 𝑼𝒕,𝝀
𝒔

, 𝝀 ∈ 𝚲

1. Forward propagation

𝑼𝒕,𝝀
ሺ𝒔ሻ

= 𝑨𝝀𝑼𝒐,𝝀
ሺ𝒔−𝟏ሻ

, 𝝀 ∈ 𝚲

Initialization

𝑼𝒐,𝝀
ሺ𝟎ሻ

= 𝑨𝝀
#|𝑽 𝝀 |𝒆𝒙𝒑ሺ𝒊 ⋅ 𝟎ሻ

Observations

𝑠 = 𝑠 + 1

𝑓𝑜𝑟 𝑠 = 1, . . . , max𝑖𝑡𝑒𝑟

𝑠 == max𝑖𝑡𝑒𝑟

4. Complex Cube Filtering (CCF) Algorithm

1. Transform data to a smaller subspace 

by SVD (Singular Value Decomposition);

2. Complex-Domain noise suppression by 

CDBM3D in this subspace;

3. Transform data back to original space.  

*I. Shevkunov, et al. "Hyperspectral phase imaging based on denoising in complex-valued 

eigensubspace." Optics and Lasers in Engineering 127 (2020): 105973.

**V. Katkovnik, K. Egiazarian. "Sparse phase imaging based on complex domain nonlocal 

BM3D techniques." Digital Signal Processing 63 (2017): 72-85.

𝒁𝒕, t∈ 𝑻
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Simulation test (1)

𝒏𝝀 is a wavelength depending refractive index,

𝝀 is a wavelength,

𝒉ሺ𝒙, 𝒚ሻ is a thickness of the object.

250 wavelengths in the range of 𝚲 ∈ [𝟒𝟓𝟎 ∶ 𝟗𝟎𝟎] nm, uniformly distributed laser spectra.

The beam goes through the object, propagates to the sensor and intensity observations are presented as 3D

cube 𝑸𝑲ሺ𝒙, 𝒚ሻ of the length 𝒍𝑲 = 𝟐𝟓𝟎.

∆𝝋𝝀 𝒙, 𝒚 =
𝟐𝝅

𝝀
𝒏𝝀 − 𝟏 ∙ 𝒉 𝒙, 𝒚 , 𝑨𝟎=1

𝑼𝒐ሺ𝒙, 𝒚, 𝝀ሻ = 𝑨𝟎ሺ𝒙, 𝒚ሻ𝒆
𝒊𝜟𝝋𝝀ሺ𝒙,𝒚ሻ

𝜺𝜦 𝐱, 𝐲 =
𝝈

𝟐
(𝜺𝒓𝒆 ሺ𝒙, 𝒚ሻ + 𝒊𝜺𝒊𝒎ሺ𝒙, 𝒚ሻ)
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Fig. 1. RRMSE maps for the reconstructions in different noise conditions.

(a) Map of RRMSE values averaged over λ as function of iteration number s

and PSNR; (b) RRMSE for each λ depending on iteration number s for the

case of PSNR= 12.2 dB.

𝑹𝑹𝑴𝑺𝑬 =

σ𝒙,𝒚 ෝ𝝋 𝒙, 𝒚 − 𝝋ሺ𝒙, 𝒚ሻ 𝟐

σ𝒙,𝒚 𝝋ሺ𝒙, 𝒚ሻ
𝟐

Fig. 2 Reconstruction of the object thickness obtained from

the phase retrieval for the wavelength λ = 730 nm, σ = 2.5

and iteration number s = 30

|  13
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Fig. 1. (a) PSNR dependencies from noise standard deviation 𝜎𝑛𝑜𝑖𝑠𝑒 for registered intensities 𝐽ሺ𝑧ሻ, black squares curve,

and for estimated spectra 𝑽 𝝀 𝟐, red circles. (b) PSNR map of the estimated spectra for different 𝜎𝑛𝑜𝑖𝑠𝑒
and wavelengths 𝜆.
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Experimental results, setup

Fig.1 Setup for spectrally resolved digital holography with the

supercontinuum laser source. a) Hyperspectral phase

retrieval setup. BS1-2 are beamsplitters, M1-4 are mirrors,

``O'' is a transparent object, ``Cam'' is a registering sensor,

``B'' is a light blocker. ``Delay'' is a moving delay stage.

Fig.2 Used spectrum: a black dash curve is a registered

spectrum by a spectrometer and multiplied by camera

quantum efficiency, a red solid curve is for the Fourier

transform reconstructed spectrum.



Video 1. The amplitude and phase reconstructions.

Fig 1.Spectra and phase for different points of the amplitude object

image. The curves in the plots correspond to the points numbered in

the amplitude image on the left.
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Main Results

➢ A novel class of the HS phase retrieval problems is presented where both object

and image formation operators are spectrally varying;

➢ The hyperspectral phase retrieval algorithm has been developed for Fourier

Spectroscopy scenario which allows to reconstruct a complex amplitude of object

in lensless optical setup;

➢ The developed iterative algorithm uses the original proximity spectral

analysis operator and the HS sparsity modeling for complex-valued 3D cubes;

➢ With growing interest in hyperspectral imaging, we expect that the developed

technique finds application in various bio- and medical tasks for non-invasive

quantitative phase imaging.
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Igor.Shevkunov@tuni.fi

http://www.cs.tut.fi/sgn/imaging/
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