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( Tanor i Hyperspectral Imaging (HSI)
i " Direct (physical) spectral measurements
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Typical HSI system employs filters for wavelength separation

*Chang, C. |. Hyperspectral imaging: techniques for spectral detection and classification (Vol. 1). Springer Science & Business Media, 2003
**Mehta N et.al. Single-Cell Analysis Using Hyperspectral Imaging Modalities. ASME. J Biomech Eng. 2018;140(2):020802
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( Tempersenopt Hyperspectral Phase Imaging -indirect spectral measurements,
" Computational spectral analysis.

Phase, Why and What for ? Fourier Spectroscopy

(1) Digital holography HSI with the reference beam

co

J(®) = fo |A(w) + Rexp(rrwt)|*dw =

joo(|t4(w)|2 + R?* + 2|A(w)| X R cos (@ 4(w) — 2 nwt))dw
0

where A(w) is a complex-valued transfer function of the object (for transparent object) to be
analyzed with the amplitude |A(w)| and the phase ¢4(w), A(w) = |[A(w)|exp(j @4(w)).

(2) Phase retrieval HSI without the reference beam

co

J(t) = fo A(w) + A(w)exp(2rwt)[2dw =

2 fOOOIA(w)IZ(l + cos (2nwt) )dw.
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1. Object to be reconstructed:

Uy(x,y, k) € C™™M s a 2D slice of 3D cube Qk(x,y) = {Uy(x,y,k), k € K}.
The total size of the cube isn X m X lg,
where k denotes the spectral components of the length .

2
2. Intensity measurements: Y; = ZkeK|Ut,k| , Uiy =AkUpk, tEeT.

Here and what follows, we use the vectorized representation for slices Uy, € CV, N =n xm, and
Ay € CM*N gre linear operators of image formation object images from the object plane to the
sensor plane.

3. HS phase retrieval problem:

Reconstruction of the complex-valued cube Qx(x,y) from noisy intensity observations:

Zt:Yt‘I'gt,tET.
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We restrict the class of the operators A, to the form appeared in Fourier Spectroscopy
with the measured intensities Y, of the from:

2

~2% ikt
Yt — ZkEKlAt,k UO,k , At,k — (1 + e N] )Ak, teT.

For noisy intensity observations Z; =Y, + &, t € T , where & ~ N(0,0)

This intensity can be presented in the form
2T 2
Yi=2Yex(1+cos (-kt)) Bl teT,

where By= A, U, and N is a number of experiments on varying t.
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Tamperoenyiopist Algorithm development (1)
Criterion
N 2 N
N- 71 71 N
1 2 21 2 51
éo_—z — 2 |Bk| 1+ cos Wkt + 1/yz||Bk_Aka,k”2+freg {Uo,k}l .
t=0 k=0 2 k=1

The first summand is a fidelity term for Gaussian noise.

The last one is a penalty formalizing a non-local patch-wise complex-domain sparsity for the object
cube images.

The second summand penalizes residuals between the splitting variable By and A, U, k.

N_
The developed algorithm of iterates ming,; J on By provided given {Uo,k}i ! and ming 1 J
provided given {By }.
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(1) Minimization on By,

o . N
For minimization ming,,J, we solve the equations aé;‘ =0, [=1,. 5T 1
N-1
4 2m 4N . 1 1
—?;Ztcos Wkt +?|Bl| +; B, =;A1U0,l.

With the solution for B; of the form for the phase and amplitude, respectively:

P, = Pau,,
Non-negative solutions of the cubic polynomial equations calculated by Cardano formulas:
N_lz 2”k 4NB2 ! B 1AU =0
; tCOS(N t>+02| 1 +y | B yl 1Uoi| = 0.

g2
t=

Important features of this solution:
(1) It produces the spectral analysis giving the complex-valued spectral estimates from intensity measurements;

(2) Filters the Gaussian noise in observations (can be done for Poissonian noise);
(3) This solution can be interpreted as an original proximity operator Bff)= proxf,,(AlU,,,l), =1, g 1,
where f stays for the fidelity term of the criterion J.
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(2) Minimization min{Uok}] defines regularization (filtering) of the HS cube in complex domain.

Instead of variational approach, we use the specially designed sparsity based filter for joint and
separate filtering spectral slices of the HS object cube.

{(Uyr k € K} = CCF{U,,;, k € K}

Complex domain Cube Filter (CCF) processes the cube data {U, ,, k € K} jointly and provide the estimates

{U,y 1 k € K} for all k.
(a) The CCF algorithm is based on SVD of the HS cube which identifies an optimal subspace for the HS
Image representation including both the dimension of the eigenspace and eigenimages in this space.

(b) The Complex-Domain Block-Matching 3D (CDBMS3D) algorithm filters this small number of eigenimages.
Going from the eigenimage space back to the original image space we obtain the reconstruction of the object

cube {U, . k € K}.
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Initialization

U® = At |V(2)|exp(i - 0)

fors=1,... maxj,

1. Forward propagation

Us) = a,U8 0, 1€

Observations 2. Proximity operation

3. Backward propagation

) _ 2#g®)
Uy = A%BYY, 1€ A

4. Merging and noise suppression

(US), A € A} = CCF{UY), 1 € A}

S == MaXiter

s=s+1

U((;;axiter)’l eEA
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Initialization

Initialization

Initial guess of object wavefronts

fors=1,...,
1. Forward propagation

©) _ 2,y
us) = 4,050, 1en

U (x,y) = A{IV(x,y, )|} exp(i - 0)

Here USB - object wavefront, superscript (0) is for the

initial iteration number;

subscripts o, A are notations for object plane and
wavelength, respectively;

[V(x,y,4)| (or |[V(4)]) is the intensity spectra of
observations;

A%{|V(x,y, 2|} — backward propagation of |V(x,y, 1)|
to the object plane;

superscript # stays for backward propagation;
exp(i-0) - multiplier for the phase guess, which is
zero in our case.

BlbEEEl G 2. Proximity operation

3. Backward propagation

() _ 2#g()
US) = A%BYY, 1€ A

4. Merging and noise suppression
(US), 1€ A} = CCF{UY), 1 € A}

end,s == MmaXjer

(s)
Uo A’

s=s+1

U((:";axiter),l eEA
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Initialization

1. Image Formation (Forward

©) _ .
U,; = A;|V(D)|exp(i- 0) propagation)

.....

The Rayleigt-Sommerfeld integral solution)n in

1. Forward propagation Angular Spectrum (AS) model is used:

Us) = a,U8 0, 1€

U = U} = M ) F (U5

Observations 2. Proximity operation

)
Us)), A€ A

Z, teT

. 2T 1
H(f o fy, d)= P [‘7“\/ 1-22(f+ f%)] SEHS <5

3. Backward propagation

) _ 2#g®)
Uy = A%BYY, 1€ A

0 ,otherwise

Uf,f; Y _ object wavefront at obect's plane,

UESA) — object wavefront at sensor’s plane,

F and F-! stay for the Fourier and inverse Fourier transforms,
{Uff,)l,/l €A} = CCF{US%,A € A} s=s+1 d is a propagation distance,

fxand f, are spatial frequencies,

A — wavelength.

4. Merging and noise suppression

S == MaXiier

U((:';axiter)’l eEA
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Initialization

U® = At |V()|exp(i- 0)

1. Forward propagation

Us) = a,U8 0, 1€

' 2. Proximity operation

Observations

Z, teT

3. Backward propagation

) _ 2#g®)
Uy = A%BYY, 1€ A

4. Merging and noise suppression

(US), A € A} = CCF{UY), 1 € A}

S == MaXjter

s=s+1

(maxiter)
Uo,A

LAEA
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Iterative HyperSpectral Phase Retrieval Algorithm

2. Proximity operation

B = proxyy (v5)

where y > 0is a relaxational parameter and f stays for the minus
log-likelihood part of the criterion:

N 2
N-1 721

1 ) 2T

— Zt—ZZ|Bk| 1+ cos|—kt

o? N
t=0 k=0 2

The proximity solution Bgs) resolves two problems:

1) Complex domain spectral components B! are extracted from the
intensity observations. Thus, we obtain the spectral analysis of
the observed intensities averaged over the wavelengths.

The noisy observations are filtered with the power controlled by
the parameter y compromising the noisy observations Zt and the

power of the predicted signal UE? at the sensor plane.
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Initialization

U = A% |v(Q)|exp(i - 0)

3. Backward propagation

1. Forward propagation

Us) = a,U8 0, 1€

Same Angular spectrum approach, but for backward
propagation (#) the sign of the propagated distance
IS inverted.

Observations 2. Proximity operation

3. Backward propagation

) _ 2#g®)
Uy = A%BYY, 1€ A

4. Merging and noise suppression

(US), A € A} = CCF{UY), 1 € A}

S == MaXjter

U((:';axiter)’l eEA
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Initialization

U® = At |V()|exp(i- 0)

for s =1,..., maxter

4. Complex Cube Filtering (CCF) Algorithm

Noisy observations Noise estimates

1. Forward propagation

Observations

Transform data to a smaller subspace
by SVD (Singular Value Decomposition);

Complex-Domain noise suppression by
CDBMB3D in this subspace;

4. Merging and noise suppression l ‘

(US), A € A} = CCF{UY), 1 € A}

S == MaXjter

3. Transform data back to original space.

*|. Shevkunov, et al. "Hyperspectral phase imaging based on denoising in complex-valued
eigensubspace." Optics and Lasers in Engineering 127 (2020): 105973.
**\/. Katkovnik, K. Egiazarian. "Sparse phase imaging based on complex domain nonlocal

Output ; aceiiel ;
BM3D techniques." Digital Signal Processing 63 (2017): 72-85.

U((:';axiter)’l eEA
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Uy(x,y,4) = Ag(x, y)e'49a(x) n, is a wavelength depending refractive index,
2

Ap;(x,y) == (n; — 1) - h(x,y), A¢=1 A is a wavelength,

ea(xy) = %(&e (x,y) + i€ (x,y)) h(x,y) is a thickness of the object.

250 wavelengths in the range of A € [450 : 900] nm, uniformly distributed laser spectra.
The beam goes through the object, propagates to the sensor and intensity observations are presented as 3D

cube Qx(x,y) of the length I = 250.

b) USAF's 3D thickness map t  5op ©) Observations %Central pixel interferogram
1000 | ‘ ‘
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a) USAF's 2D thickness map 200
300 :
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£ y ]
7 = S
100 & 50 €5
£ £
Q
2
0 et
100 0— ‘ ‘
. 15054, 800 1000 1200
60 X, PIX X, pIX ;

Y, pix

The 27th IEEE International Conference on Image Processing, 2020



C Tampereen yliopisto s i m u I at i o “ teSt (2)

Tampere University

b) USAF's Phase RRMSE

a) USAF's mean phase RRMSE PSNR=12.2dB
05
0.5 0.45 b
) HSPR USAF
)HSPR USAF - -
o G _73:nm B s . A=730nm, RRMSE=0.083
L(})J 0.35 1.4
= 098 12
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20 ~—_ . /0N, .
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Fig. 1. RRMSE maps for the reconstructions in different noise conditions. Fig. 2 Reconstruction of the object thickness obtained from
(a) Map of RRMSE values averaged over A as function of iteration number s the phase retrieval for the wavelength A = 730 nm, ¢ = 2.5
and PSNR; (b) RRMSE for each A depending on iteration number s for the and iteration number s = 30

case of PSNR=12.2 dB.

\/Zx,yI@(x, y) —o(x,y)?

RRMSE =

[EeloG P
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b) PSNR of estimated spectra IV/\ |2

a) PE%NR for registered intensities and spectra | s
—=—Registered intensity J(z)
70 —§-Estimated spectra |V, Kt 60 5
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0 1 2 3 4 5 S 800
ag_ . gnoise )\, nm
noise

Fig. 1. (a) PSNR dependencies from noise standard deviation o,,,;s. for registered intensities J(z), black squares curve,
and for estimated spectra |V (4)|?, red circles. (b) PSNR map of the estimated spectra for different o,,,;5,
and wavelengths A.
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Laser

M1
BS1

Cam

O BS2

M3 M4
Delay

Fig.1 Setup for spectrally resolved digital holography with the
supercontinuum laser source. a) Hyperspectral phase
retrieval setup. BS1-2 are beamsplitters, M1-4 are mirrors,
0" is a transparent object, "Cam" is a registering sensor,
B" is a light blocker. “"Delay" is a moving delay stage.

SPIE Photonics Europe, 2020

Experimental results, setup
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Fig.2 Used spectrum: a black dash curve is a registered
spectrum by a spectrometer and multiplied by camera
guantum efficiency, a red solid curve is for the Fourier
transform reconstructed spectrum.
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Video 1. The amplitude and phase reconstructions.
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Fig 1.Spectra and phase for different points of the amplitude object
image. The curves in the plots correspond to the points numbered in

the amplitude image on the left.
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Tamperoenyiopist Main Results

» A novel class of the HS phase retrieval problems is presented where both object
and image formation operators are spectrally varying;

» The hyperspectral phase retrieval algorithm has been developed for Fourier
Spectroscopy scenario which allows to reconstruct a complex amplitude of object
In lensless optical setup;

» The developed iterative algorithm uses the original proximity spectral
analysis operator and the HS sparsity modeling for complex-valued 3D cubes;

» With growing interest in hyperspectral imaging, we expect that the developed

technique finds application in various bio- and medical tasks for non-invasive
quantitative phase imaging.
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Thank you for your attention
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