"Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary"

Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary **ICIP 2020**

The University of Edinburgh, UK School of Engineering Institute for Digital Communications (IDCOM)

Dr Nikolaos Dionelis Dr Mehrdad Yaghoobi **Prof. Sotirios A. Tsaftaris**

Boundary of Distribution Support Generator

- **Focus on:** Generative Models for Anomaly Detection (AD)
- Create the Boundary of Distribution Support Generator (BDSG) model
- Address limitations of current state-of-the-art:
 - Multimodal distributions
 - Support with disjoint components
 - Mode collapse; Probability density
 - Boundary of distribution support
- Improve the AD methodology
- Create an objective cost function to force the generated samples to the boundary of the data distribution

Generative Models for AD

- Promising framework:
 - GAN-AEs; VAEs; Invertible Generative Models
- Compute probability at any point in the data space
- Model definition and training:
 - Architecture; Loss function
 - Minimization; Convergence
- Reduce false negative errors
 - Mises, Type II errors
 - Address false positives
 - False Alarms, Type I errors
- Leave-one-out evaluation
 - AUROC; AUPRC; F1 score

L. van der Maaten and G. Hinton, Visualizing Data using t-SNE, (http://www.jmlr.org/papers/volume9/vand ermaaten08a/vandermaaten08a.pdf)

Discernible Limitations for Practical AD

- Improve performance on benchmark datasets d(pdata, p)
- Shortcomings of current methodologies:
 - Dataset not normal or partially labelled
 - Fit model: Learn normal data distribution
 - Leave-one-out evaluation
 - Anomalies not confined to a finite annotated set
 - Complement of support; Lack of strong anomalies
 - Rarity problem: Sampling complexity
- Current methodologies are problematic:
 - For detecting the boundary of multimodal distributions
- <u>Aim</u>: Address such challenges

 p_{θ}

 $\theta \in \mathcal{M}$

 $\mathbf{x}^{(j)} \sim p_{\text{data}}$

 $j = 1, 2, \ldots, |\mathcal{D}|$

pdata

"Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary"

Flowchart of Proposed Boundary Generator

- Perform sample generation on the boundary
- Generate samples on the boundary of the data distribution:
 - Train an invertible model to fit the normal data distribution
 - Invertible Residual Networks for density estimation

■ Learn Generator G(**z**) and G⁻¹(**x**)

- Given data distribution, $p_x(x)$: Approximate with $p_a(x)$
- Create and train B($\mathbf{z}; \boldsymbol{\theta}_{h}$) to generate boundary samples
- $B(\mathbf{z}; \mathbf{\theta}_{b}) = Mapping from latent space, \mathbf{z}$, to data space, \mathbf{x}

Proposed BDSG Boundary Generator

- Run Gradient Descent on proposed loss function
 - Penalize probability and distance from normality
 - Avoid mode collapse: Dispersion, scattering
- Create a cost function that forces the generated samples to the boundary of the support of the data distribution

Cost Function of Boundary Generator

$$L(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}, G, \lambda_1, \lambda_2) = L_0(\boldsymbol{\theta}_b, \mathbf{z}, G) + \lambda_1 L_1(\boldsymbol{\theta}_b, \mathbf{z}, \mathbf{x}) + \lambda_2 L_2(\boldsymbol{\theta}_b, \mathbf{z})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[p_g(B(\mathbf{z}_i; \boldsymbol{\theta}_b)) + \lambda_1 \min_{j=1}^{M} ||B(\mathbf{z}_i; \boldsymbol{\theta}_b) - \mathbf{x}_j||_2 + \lambda_2 \frac{1}{N-1} \sum_{j=1, j \neq i}^{N} \frac{||\mathbf{z}_i - \mathbf{z}_j||_2}{||B(\mathbf{z}_i; \boldsymbol{\theta}_b) - B(\mathbf{z}_j; \boldsymbol{\theta}_b)||_2} \right]$$

- N = Batch size; M = Sample size
- L_0 : Penalize probability density to find the boundary
- L₁: Distance from a point to a set
 - Penalize distance from normality
- L₂: Scattering, dispersion, and diversity
 - Avoid mode collapse

First Term of BDSG Model

• Use change of variables formula:

$$L_{0}(\boldsymbol{\theta}_{b}, \mathbf{z}, G) = \frac{1}{N} \sum_{i=1}^{N} p_{g}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[p_{\mathbf{z}}(G^{-1}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))) |\det \mathbf{J}_{G}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))|^{-1} \right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[\exp(\log(p_{\mathbf{z}}(G^{-1}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b})))) - \log(|\det \mathbf{J}_{G}(B(\mathbf{z}_{i}; \boldsymbol{\theta}_{b}))|)) \right]$$

- $L_0: B(z), G^{-1}(x), \det J_G(x), p_z(z)$
- Standard Gaussian distribution, **z** ~ N(**0**; **I**)
- Inference: Anomaly if $p_a(\mathbf{x}) < \varepsilon$ and normal o/w

Evaluation of BDSG Model

- **Datasets:** Synthetic data; MNIST; CIFAR-10
- Evaluation for AD: Leave-one-out; OoD data
- Baselines:
 - GANomaly, EGBAD, VAE, AnoGAN, FenceGAN
 - WGAN, MinLGAN
- Evaluation metrics:
 - Algorithm convergence criteria; AUROC; AUPRC
- OoD data:
 - Fashion-MNIST; KMNIST; QMNIST
 - CIFAR-100; SVHN; STL-10

Boundary Formation of BDSG Model

• Synthetic data: Unimode and multimodal distributions

(a) IResNet: Input samples toIResNet (left), outputprobability density (middle),and output samples (right)

(b) Closed-Form Solution for BDSG Model

(c) BDSG Model; B(z)

10

AD Performance of BDSG Model

• Evaluation on MNIST: Leave-one-out methodology

- Leave-out class (horizontal axis) is the anomaly class
- BDSG: Competitive performance

BDSG GANomaly [5] EGBAD [11] AnoGAN [10] VAE [13] 1,00 0,75 AUROC 0,50 0,25 0.00 0 1 2 3 4 5 6 7 8 9 Average

= WGAN [19]

BDSG = GANomaly [5] = EGBAD [11] = AnoGAN [10] = VAE [13] = FenceGAN [13]

Performance of Proposed BDSG

• Evaluation on CIFAR-10: Leave-one-out methodology

- Leave-out class (horizontal axis) is the anomaly class
- BDSG: Good performance

BDSG GANOMALY [5] EGBAD [11] ANOGAN [10] VAE [13] FenceGAN [13]

Performance of Proposed BDSG

	_			-
MNIST	Loss	L1	L2	300
MNIST				250 -
Digits 1-9	0,74	0,93	18,26	200 -
MNIST				100 -
Digits 0	20,36	66,32	18,40	50 -
Fashion-				-4000
MNIST	9,92	31,44	19,44	F
KMNIST	0.28	20.37	18 73	A
	9,20	23,37	10,75	A

• Evaluation on MNIST: OoD data

• Histograms:

• Evaluation on CIFAR-10: OoD data

CIFAR-10	Loss	L1	L2
CIFAR-10 Digits 0-9	3,16	8,94	19,28
CIFAR-100	7,50	23,43	18,77
SVHN	7,18	22,36	19,07
STL-10	10,00	31,75	19,03

Conclusion

- Determination of the boundary of the data distribution for AD
- Create the BDSG model for AD:
 - Learn the mapping from z to x concentrating the images of z on the support boundary
 - Minimize a cost function to force the generated samples to the boundary of the data distribution
 - Support with disconnected components
 - Address the problem of detecting strong anomalies
 - Create an algorithm for sample generation on the boundary obviating the rarity and sampling complexity problem
- Achieve competitive performance on (i) synthetic data from multimodal distributions, and (ii) MNIST and CIFAR-10