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Boundary of Distribution Support Generator

e Focus on: Generative Models for Anomaly Detection (AD)
e Create the Boundary of Distribution Support Generator
(BDSG) model
e Address limitations of current state-of-the-art:
o Multimodal distributions
o Support with disjoint components
m Mode collapse; Probability density
o Boundary of distribution support
e Improve the AD methodology
e Create an objective cost function to force the generated
samples to the boundary of the data distribution
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Generative Models for AD

Promising framework:
o GAN-AEs; VAEs: Invertible Generative Models
Compute probability at any point in the data space
Model definition and training:
o Architecture; Loss function
o Minimization; Convergence
Reduce false negative errors
o Mises, Type |l errors
o Address false positives

m False Alarms, Type | errors
Leave-one-out evaluation X
o AUROC; AUPRC; F1 score L. van der Masten and G. Hinton,

Visualizing Data using t-SNE,
(http://www.jmIr.org/papers/volume9/vand
ermaaten08a/vandermaaten08a.pdf)

e x + o .
WoONOODOGSAEWN-=-O

Ny P
Fag

23 ‘.;
8 S T
S ,‘@5%




“Boundary of Distribution Support Generator

(BDSG): Sample Generation on the Boundary”

Discernible Limitations for Practical AD

Improve performance on benchmark datasets _ d@aro)
Shortcomings of current methodologies: Paata

x(j) ~Pdata

o Dataset not normal or partially labelled j=12..,ID|  @em
m Fit model: Learn normal data distribution

o Leave-one-out evaluation
m Anomalies not confined to a finite annotated set
m Complement of support; Lack of strong anomalies

o Rarity problem: Sampling complexity

Current methodologies are problematic:

o For detecting the boundary of multimodal distributions

Aim: Address such challenges

Po
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Flowchart of Proposed Boundary Generator

Perform sample generation on the boundary
e Generate samples on the boundary of the data distribution:

o Train an invertible model to fit the normal data distribution

o Invertible Residual Networks for density estimation

m Learn Generator G(z) and G™(x)

o Given data distribution, p_(x): Approximate with pg(x)

o Create and train B(z; 0,) to generate boundary samples
e B(z; 8,) = Mapping from latent

space, z, to data space, x {%

Change of
- I
p=(2) Variables an
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Proposed BDSG Boundary Generator

Generator
Latent space, z L > Data space, x
G(z; 8g)
A

Encoder »
G1(x;0e) [

\ * \

@ Change of Pgy(x) Generator Boundary
- e — B
Bz Variables and px(x) B(z; 6p) samples

}

e Run Gradient Descent on proposed loss function
o Penalize probability and distance from normality
o Avoid mode collapse: Dispersion, scattering

e Create a cost function that forces the generated samples to
the boundary of the support of the data distribution
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Cost Function of Boundary Generator

L(0y,z,x,G,A\1,\2) = Lo(0y,2,G) + A\ L1(0p,2,X) + A2Ly(0}, 2)

N
1 M ||zz -5l |
- WZ:: [ B(2:;05)) + A1 min||B(z:06) —Xsll2 +A2r 7 Z ||B(zi;0b) — B(z;; 0b)||2J

J=1, j#i

e N = Batch size; M = Sample size
e L : Penalize probability density to find the boundary
o L Distance from a point to a set
m Penalize distance from normality
e | Scattering, dispersion, and diversity
m Avoid mode collapse



“Boundary of Distribution Support Generator

(BDSG): Sample Generation on the Boundary”

First Term of BDSG Model
e Use Change of variables formula:

Lo(0y,2,G) = NZpg (z;;0p))

[
2| =

Pa(G 7 (B(2i:00)) |det S (B2 60)) |

1=1

[exp(log(p, (G~ (B(z4:64)))) — lo(|det I (B(z::85))]))]

T[] =

l
N

1

o L. B(z), G'(x), det J (x), p(2)

e Standard Gaussian distribution, z ~ N(0; I)
e Inference: Anomaly if pg(x) < ¢ and normal o/w
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Evaluation of BDSG Model

Datasets: Synthetic data; MNIST, CIFAR-10
Evaluation for AD: Leave-one-out; OoD data
Baselines:
o GANomaly, EGBAD, VAE, AnoGAN, FenceGAN
o WGAN, MinLGAN
Evaluation metrics:
o Algorithm convergence criteria; AUROC; AUPRC
OoD data:

m Fashion-MNIST; KMNIST; QMNIST

m CIFAR-100; SVHN; STL-10
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Boundary Formation of BDSG Model

e Synthetic data: Unimode and multimodal distributions

(a) IResNet: Input samplesto  (b) Closed-Form Solution (c) BDSG Model: B(z)
IResNet (left), output for BDSG Model

probability density (middle),

and output samples (right)
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AD Performance of BDSG Model

e Evaluation on MNIST: Leave-one-out methodology
o Leave-out class (horizontal axis) is the anomaly class
o BDSG: Competitive performance

= BDSG = GANomaly [5] = EGBAD [11] = AnoGAN [10] = VAE [13] » BDSG = GANomaly [5] = EGBAD [11] = AnoGAN [10] = VAE [13] = FenceGAN [13]
= WGAN [19]
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» BDSG = GANomaly [5] = EGBAD [11] = AnoGAN [10] = VAE [13] = FenceGAN [13]

12



“Boundary of Distribution Support Generator

(BDSG): Sample Generation on the Boundary”

Performance of Proposed BDSG

e FEvaluation on MNIST: OoD data .
e Histograms:

MNIST | Loss L1 L2 e . s

YTV s 01 1™ 10 ™ W B
Digits 1-9] 0,74 0,93 18,26

MNIST

Digits 0 | 20,36 66,32 18,40 |~ ”
Fashion- T M, e 0 B P

MNIST 9,92 31.44 19,44 Fashion-MNIST KMNIST QMNIST

AUROC: 0.9996 AUROC: 0.9973 AUROC =0.5171

KMNIST | 9.28 29.37 18,73 AUPRC: 0.9997 AUPRC: 0.9977 AUPRC =0.5126

e FEvaluation on CIFAR-10: OoD data

C I FAR_1 0 Loss L1 L2 . H I Stog ra m S : BDSG, Test 00D Datal Train MNIST OR (:JF'::TAUPRC
CIFAR-10 o Sl e " =
Digits 0-9 | 3,16 8,94 | 19,28 | =

AUROC and AUPRC
o
@
g

CIFAR-100| 7,50 23,43 18,77 |-

SVH N 7’ 1 8 22’36 1 9,07 : a.znnmaly Smrens : = ) cv:’mma‘y S(m:e ) - 0.00 Flsh;:;igrls'” KMNIST/ MNIST ~ QMNIST/ MNIST C(l;IFFAAR';“ﬂ:/ SVHN/ CIFAR-10 STL-10/ CIFAR-10
sTL10 | 1000 | 3175 | 19,03 SVHN STL-10 ot

) : : : AUROC: 09120  AUROC: 0.6439  AUROC, AUPRC: Test OOD/ Train
AUPRC: 0.9295 AUPRC: 0.6472 MNIST or CIFAR-10
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Conclusion

e Determination of the boundary of the data distribution for AD
e Create the BDSG model for AD:
o Learn the mapping from z to x concentrating the images of
z on the support boundary
o Minimize a cost function to force the generated samples to
the boundary of the data distribution
m Support with disconnected components
Address the problem of detecting strong anomalies
Create an algorithm for sample generation on the boundary
obviating the rarity and sampling complexity problem
e Achieve competitive performance on (i) synthetic data from
multimodal distributions, and (ii) MNIST and CIFAR-10
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