BUBBLENET:

A disperse recurrent structure to recognize activities

Igor L. O. Bastos

igorlobastos@dcc.ufmg.br

Victor H. C. Melo

victorhcmelo@dcc.ufmg.br

William R. Schwartz

william@dcc.ufmg.br

Smart Sense Laboratory

Federal University of Minas Gerais - UFMG

ACTIVITY RECOGNITION

Draw Sword: 0.62 Fencing: 0.38

Riding Horse: 0.83 Riding Bike: 0.17

• One of the **most studied topics** in computer vision [1], presenting several **challenges** and **high applicability** for several tasks

Discriminative information denoted by changes in appearance and motion of elements over time [2, 3]

[1] T. Xu and E. Wong, "Learning temporal structures for human activity recognition," in IEEE BMVC, 2017.

[2] J. Chaquet, E. Carmona, and F. Antonio, "A survey of video datasets for human action and activity recognition," Computer Vision and Image Understanding, 2013.

^[3] I. Bastos, L. Soares, andW. Schwartz, "Pyramidal zernike over time: A spatiotemporal feature descriptor based on zernike moments," in CIARP, 2017.

ACTIVITY RECOGNITION

- Complex activities can be decomposed into correlated primitive segments, being considered their fundamental parts, such as local motions and sub-actions [2, 4, 5]
- Despite the existence of local arrangement, activities **do not present a global temporal structure** of their segments

[4] H. Wang, A. Klser, C. Schmid, and C. Liu, "Dense trajectories and motion boundary descriptors for action recognition," International Journal of Computer Vision, vol. 103, 05 2013.
[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning spatiotemporal features with 3d convolutional networks," in IEEE ICCV, 2015.

BUBBLENET

Recurrent Layer Disperse Recurrent Layer

- Literature approaches **do not invest** on the modeling **of correlated fundamental segments** and their **disposition** along with activity videos [5, 6, 7]
- BubbleNET tackles these gaps, through a **recurrent layer** dispersed into **independent modules**, named **bubbles**
- BubbleNET is designed to gather both **elementary** and **spread patterns** existent on the **overall composition** of an action

[6] J. Donahue, L. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, and T. Darrell, "Long-term recurrent convolutional networks for visual recognition and description," IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 677691, 2017.
[7] A. Murad and J. Pyun, "Deep recurrent neural networks for human activity recognition," Sensors, vol. 17, 2017.

BubbleNET Architecture

Original and modulated information are added to produce weighted attention bubbles

BUBBLENET ARCHITECTURE (FE LAYERS)

FE layers extract **spatial information** from frames of **secondary input** of the **model**

Information is used to produce a Squeezed-representation to modulate bubbles

BUBBLE EXCITATION (ATTENTION MECHANISM)

BUBBLE EXCITATION (ATTENTION MECHANISM)

Attention weighted response from bubbles derives from the sum of original bubbles and modulated signal

Human Motion Database (HMDB-51) [9]

6,849 videos 51 different activity classes

11,320 videos 101 different activity classes

YUP++ Dynamic Scenes [10]

1,200 videos 20 different scene classes

[9] H. Kuhne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, "Hmdb: A large video database for human motion recognition," in IEEE ICCV, 2011.
[10] C. Feichtenhofer, A. Pinz, and R. Wildes, "Temporal residual networks for dynamic scene recognition," in IEEE CVPR, 07 2017, pp. 7435–7444
[11] K. Soomro, A. Zamir, and M. Shah, "Ucf101: A dataset of 101 human actions classes from videos in the wild," CoRR, 2012.

Table 1 – BubbleNET Hyperparameters for e

	HMDB-51	UCF-101	YUP++	
Number of Bubbles	256	256	36	
Size of Bubbles (units)	24	28	12	
Optimizer	Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)			
Learning Rate	0.00005			

BubbleNET major hyperparameters for each evaluated dataset. Type of recurrent layer was also determined through validation tests

EVALUATION OF BUBBLENET

Table 2 – BubbleNET results in comparison to literature approaches YUP++ HDMB-51 **UCF-101** HAF + BOW/FV 92.60% 82.48% ADL + I3D81.50% 91.70% -**EvaNET** 82.30% Two-Stream I3D 80.20% 97.90% MARS + RGB + Flow 81.30% 97.80% BubbleNET + I3D RGB + I3D Flow + RNN 76.20% 92.43% 86.75% BubbleNET + Appearance FE + I3D Flow + RNN 80.20% 95.63% 90.75% BubbleNET + Excited Bubbles (no sum) 78.70% 85.82% 84.58% BubbleNET + RNN 82.58% 97.62% 91.70% BubbleNET + LSTM 82.60% 97.20% 91.56%

Average Recognition **accuracy** of **BubbleNET** and **state-of-the-art** methods

EVALUATION OF BUBBLENET

Table 3 – Variations on BubbleNET recurrent layer

	YUP++
Disperse Recurrent Layer (bubbles)	91.70%
Single Recurrent Layer	81.11%
No Recurrent Layers	88.70%

Average Recognition **accuracy** for **alternatives** for the **disperse recurrent layer**

CONCLUDING REMARKS AND DISCUSSION

Mean activation of each bubble used to produce a signature for the video classes

Similar activities present closer signatures than dissimilar activities

CONCLUDING REMARKS AND DISCUSSION

Low standard deviation for video instances of a same class
BubbleNET captures what characterizes each class

BubbleNET Results

are comparable to state-of-the-art methods, emerging as the best reported approach for HMDB-51

Class Signatures

support the idea that the disperse bubble layer modularized correlated information, acting as a bag-ofactivations

Application in different fields

is a next step of BubbleNET, with tests being considered to be performed in sign-language modeling and gesture recognition

THANK YOU!

Igor L. O. Bastos

igorcrexito@gmail.com, igorlobastos@dcc.ufmg.br

https://github.com/igorcrexito/BubbleNetwork

https://www.researchgate.net/profile/Igor_Bastos2

https://www.linkedin.com/in/igor-bastos-3442481b/

