The 27th International Conference on Image Processing (ICIP 2020)

OPEN-SET METRIC LEARNING FOR PERSON RE-IDENTIFICATION IN THE WILD

Arindam Sikdar, Dibyadip Chatterjee, Arpan Bhowmik, Ananda S. Chowdhury

Jadavpur University, India

Person Re-identification (Re-ID)?

- Associate same persons across two/multiple non-overlapping Field of views (FoVs)
- Sufficient temporal discontinuity between the visuals of same person

query

2

Introduction

Our Goal:

 To simultaneously detect and re-identify (re-id in the wild) interest/target persons

a single frame (\mathbf{f}_i)

 $\textit{gallery} \ \texttt{set} \ (\textbf{G}_i) \ \texttt{generated} \ \textit{per frame}$

Challenges

- Frame-wise re-identification problem
- Gallery set is dynamically varying with each frame
- Probe set can be larger than gallery set
- From closed-set to open-set re-ID problem

Challenges

- **Open-set problem**: A probe set is not guaranteed to be present in a gallery
- Increase of several false alarms.

Previous Works

Closed-set re-ID:

- Most existing like [Zheng et al., ICCV 2015], [Xiong et al., ECCV 2014] [Liao et al., CVPR 2015] re-ID solution are based on closed sets
- Open-set re-ID:
 - [Liao *et al.,* arXiv 2014] introduced the concept of open-set person re-ID
 - Performed on private dataset with poor performance
 - [Wang et al., ICIP 2016] indicated method to address the open-set re-ID problem
 - Regularized Kernel Subspace Learning but experimented over fixed gallery

➢ Re-ID in wild:

- [Zheng *et al.*, CVPR 2017] introduced large-scale Person Re-identification in the Wild (**PRW**) dataset
 - Facilitate End-to-end pedestrian detection and recognition over raw video frames
 - Analyzed only closed-set re-ID performance

Our Contributions

Introduced open-set metric learning (OSML) for a more realistic open set re-ID setting

- Joint optimization of Weibull distribution with Mahalanobis metric [Weinberger et al., JMLR 2009] based on OS-LMNN loss
- □ Perform re-ID over dynamically (frame-wise) generated gallery sets
- Converting open-set to closed-set re-ID problem by *rejecting* probe samples over dynamic gallery set

[1] K. Weinberger et al., "Distance metric learning for large margin nearest neighbor classification," JMLR 2009.

Our Re-ID Framework

- Different components of our proposed re-ID framework
 - **Pedestrian Detection** using Mask-RCNN followed by feature extraction
 - □ Open to closed-set conversion following **Weibull rejection** before similarity ranking

Fig1. An illustrative overview of the proposed re-ID framework

Proposed Method : Pedestrian Detection

- Pedestrian Detection using Mask R-CNN [He et al., ICCV2017]
 - IOU > 0.5
 - Detector Threshold > 0.9 (for accurate pedestrian localization)

Fig 2. Detected pedestrians using Mask R-CNN

[2] Kaiming He et al., "Mask r-cnn," ICCV 2017.

Proposed Method : Feature Extraction

 Feature Extraction using traditional descriptors like BoW [Zheng et al., ICCV 2015], HistLBP [Xiong et al., ECCV 2014], LOMO [Liao et al., CVPR 2015], gBiCov [Ma et al., IMAGE VISION COMPUT. 2014]

Proposed Method : LMNN Loss

Mahalanobis Distance metric

$$D_{ij}^M = (x_i - x_j)^T M(x_i - x_j)$$

LMNN loss

$$\varepsilon(M) = (1-\mu) \sum_{i \dashrightarrow j} D_{ij}^M + \mu \sum_{i,j \dashrightarrow i} \sum_k \left[\alpha + D_{ij}^M - D_{ik}^M \right]_+$$

• μ is a weighting parameter that balances the pull and push factors

Fig 3. Schematic illustration of push pull concept based on LMNN [1] loss

[1] K. Weinberger et al., "Distance metric learning for large margin nearest neighbor classification," JMLR 2009.

Proposed Method : Introducing OSML

- □ Open Set Recognition Problems : Ability to distinguish between known and unknown/uncertain samples
- □ Most Open-set Recognition models [Scheirer *et al.*, TPAMI 2014], [Rudd *et al.*, TPAMI 2017] are applicable over **fixed known classes**
- □ Open-set metric learning (OSML) is extends the concept of Open-set Recognition over similarity metric learning of variable known samples/IDs.
- □ Based on Extreme Value theorem (EVT) a learned Weibull distribution can represent unlikely samples at the tail of their distribution.
- **OS-LMNN** combines existing LMNN approach with Weibull distribution to reject unlikely samples.

Proposed Method : Weibull PDF and CDF

Weibull Distribution PDF

$$\rho(x;\beta,\lambda) = \begin{cases} \frac{\beta}{\lambda} \left(\frac{x}{\lambda}\right)^{\beta-1} e^{-\left(\frac{x}{\lambda}\right)^{\beta}}, \ x \ge 0\\ 0, \ x < 0 \end{cases}$$

Weibull Distribution CDF

$$F(x;\beta,\lambda) = \left[1 - e^{-(\frac{x}{\lambda})^{\beta}}\right] \in [0,1]$$

Fig 4. Variation of Weibull PDF based on shape factor β

Fig 5. Variation of Weibull CDF based on shape factor β

Proposed Method : OS-LMNN Loss

- Dynamically adjust the push pull weights based on Weibull parameters at each iteration.
- Thus our proposed loss measure is:

$$\varepsilon(M,\beta,\lambda) = \sum_{i,j \dashrightarrow i} \sum_{k} \left\{ \left(\frac{\omega_{ki}}{1+\omega_{ki}} \right) D_{ij}^{M} + \left(\frac{1}{1+\omega_{ki}} \right) \left[\alpha + D_{ij}^{M} - D_{ik}^{M} \right]_{+} \right\}$$

where, $\omega_{ki} = F(D_{k,\mu_i}^M; \beta, \lambda)$ is monotonically increasing and μ_i is mean of samples of person *i* belonging to same ID

Proposed Method : OS-LMNN Loss (Contd.)

$$\varepsilon(M,\beta,\lambda) = \sum_{i,j \dashrightarrow i} \sum_{k} \left\{ \left(\frac{\omega_{ki}}{1+\omega_{ki}} \right) D_{ij}^{M} + \left(\frac{1}{1+\omega_{ki}} \right) \left[\alpha + D_{ij}^{M} - D_{ik}^{M} \right]_{+} \right\}$$

where, $\omega_{ki} = F(D_{k,\mu_i}^M; \beta, \lambda)$ is monotonically increasing

• Based on property of Weibull CDF,

$$\omega_{ki} \bigvee \qquad \left(\frac{1}{1 + \omega_{ki}} \right) \uparrow$$

• Smaller distance between dissimilar pair increases push factors weight w.r.t pull

Proposed Method : Optimization

Regularization

$$M^*, \beta^*, \lambda^* = \frac{argmin}{M, \beta, \lambda} [\epsilon(M, \beta, \lambda) + \gamma R(\beta, \lambda)]$$

where, $R(\beta, \lambda) = \frac{1}{2} \mathbb{N} \cdot (\beta + \lambda)$ is a regularization term and

 \mathbb{N} is the total no. of valid triplets

• We use L-BFGS-B [7] optimizer to solve the objective by alternatively fixing Mand $w = [\beta, \lambda]$

[7] Richard H Byrd et al., "A limited memory algorithm for bound constrained optimization," SIAM Journal on scientific computing, 1995.

Proposed Method : Sample Rejection

- Weibull Rejection mechanism:
 - Given a dynamic gallery set a G a likelihood value is assigned to every probe sample P based on Weibull PDF
 - Pairwise computation
 - Assigns a low probability value to dissimilar pairs in new metric space
 - Reject pairs with likelihood less than a threshold au (a user parameter)
 - A probe samples rejected by all samples ϵ G are inferred absent in dynamic set G
 - Similarity ranking are performed with remaining probe samples (closed set comparison)
 - The gallery ID attaining highest similarity with a probe are inferred same person

Implementation Details

- Our model performance is evaluated and compared over PRW dataset [Zheng et al., CVPR 2017]
- Mask R-CNN [He et al., ICCV 2017] detector (pre-trained on ImageNet dataset) was fine-tuned on the PRW dataset
- Our model has two hyper-parameters which are set experimentally
 - margin α = 25
 - regularization constant $\gamma = 0.5$

[2] Kaiming He et al., "Mask r-cnn," ICCV 2017.

[8] Liang Zheng et al., "Person reidentification in the wild," CVPR 2017.

Evaluation Metrics

- Detection and Identification Rate (DIR) [Liao *et al.,* arXiv 2014]
- False Acceptance Rate (FAR)

$$DIR(\tau, k) \ \frac{|\{p: p \in P_G, rank(p) \le k, \ \rho(D_{pg}^M) \ge \tau\}|}{P_G}$$

$$FAR(\tau, k) = \frac{|\{p: p \in P_N \text{ and } \rho(D_{pg}^M) \ge \tau\}|}{P_N}$$
where P_G and P_N are the two probe sets and G is the gallery set with $g \in G$

• Rank-1 recognition rate and Area under ROC (AUC) curve

Results : DPM Detector

Table 1. DIR vs. varying FAR for Rank-1 scores with the DPM detector. Best values are shown in **bold**.

Detector	Feature	Recognizer	FAR (%)				AUC (%)
			1	10	50	100	
DPM [Felzenszwalb <i>et al.</i> , TPAMI 2009]	HistLBP	LMNN KISSME DNS	9.89 11.17 12.79 3.92	19.34 21.83 22.70 10.12	41.21 46.01 49.34 37.65	60.92 65.45 66.50 72.06	39.64 43.88 45.98 37.65
		OS-LMNN (ours)	14.31	25.40	54.37	70.71	50.26
	LOMO	LMNN KISSME DNS XQDA OS-LMNN (ours)	12.64 15.95 23.12 21.97 30.04	28.69 40.60 43.72 41.54 57.63	61.56 63.11 70.87 67.33 81.42	65.58 68.98 77.58 73.70 87.61	53.89 58.34 65.22 61.96 76.30
	BoW	LMNN KISSME DNS XQDA OS-LMNN (ours)	0.43 12.56 30.03 21.17 38.69	3.96 30.04 55.30 40.72 64.23	29.84 47.07 78.71 58.02 84.62	90.11 55.82 87.03 66.82 93.34	32.85 44.35 74.19 55.16 80.83
	gBiCov	LMNN KISSME DNS XQDA OS-LMNN (ours)	10.12 15.95 23.12 17.57 24.03	23.41 40.60 43.72 33.22 46.10	54.70 63.11 70.87 53.86 65.14	62.31 68.98 77.58 58.96 70.09	48.24 58.34 65.22 49.57 61.40 ₂₀

Results : Mask R-CNN Detector

Table 2. DIR vs. varying FAR for Rank-1 scores with Mask-RCNN detector. Best values are shown in **bold**.

Detector	Feature	Recognizer	FAR (%)				AUC (%)
			1	10	50	100	
Mask R-CNN [He <i>et al.</i> , ICCV 2017]	HistLBP	LMNN KISSME DNS	10.08 15.21 17.19	21.23 27.42 30.92	45.54 58.14 63.87	65.36 74.59 79.13	43.23 53.68 58.54
		OS-LMNN (ours)	23.23 26.92	48.72 63.71	72.64 81.45	79.54 81.51	76.11
	LOMO BoW	LMNN KISSME DNS XQDA OS-LMNN (ours) LMNN KISSME	24.81 26.63 31.96 28.03 31.65 25.3 26.25	49.45 57.95 59.41 61.00 72.70 54.00 56.41	70.79 80.30 87.68 84.53 92.65 74.74 78.27	75.90 84.73 93.04 89.19 93.31 79.02 82.78	65.99 74.86 81.29 78.80 87.15 69.83 73.10
		DNS XQDA OS-LMNN (ours)	43.51 30.41 44.82	66.68 60.29 72.82	85.25 80.28 90.66	93.48 84.95 93.80	81.85 75.49 86.23
	gBiCov	LMNN KISSME DNS XQDA OS-LMNN (ours)	11.62 18.05 24.88 24.06 28.04	21.93 39.39 41.90 41.72 51.49	56.01 57.48 63.69 67.57 79.40	71.54 62.18 69.06 80.60 90.61	49.17 53.58 59.13 63.50 74.24

Results

Fig 5. ROC Curve with DIR vs FAR comparison at rank-1 recognition rate for different feature descriptors

Conclusion

- A new metric learning model has been proposed especially for performing open-set re-ID in the wild
- The concept of Weibull rejection has been introduced convert an open-set re-ID problem to a closed-set.
- The proposed model can be further improved by introducing non-linearity through kernels that can better represent the metric space for complex sets
- We plan to extend our open-set metric learning framework to end-to-end trainable deep architectures

References

[1] K. Weinberger et al., "Distance metric learning for large margin nearest neighbor classification," JMLR 2009.

[2] Kaiming He et al., "Mask r-cnn," ICCV 2017.

[3] Liang Zheng et al., "Scalable person reidentification: A benchmark," ICCV 2015.

[4] Fei Xiong et al., "Person re-identification using kernel-based metric learning methods," ECCV 2014.

[5] Shengcai Liao et al., "Person re-identification by local maximal occurrence representation and metric learning," CVPR 2015.

[6] Bingpeng Ma et al., "Covariance descriptor based on bio-inspired features for person reidentification and face verification," Image Vision Computing, 2014.

[7] Richard H Byrd et al., "A limited memory algorithm for bound constrained optimization," SIAM Journal on scientific computing, 1995.

References

[8] Liang Zheng et al., "Person reidentification in the wild," CVPR 2017.

[9] P. F. Felzenszwalb et al., "Object detection with discriminatively trained part-based models," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

[10] Shengcai Liao, Zhipeng Mo, Jianqing Zhu, Yang Hu, and Stan Z Li, "Open-set person reidentification," arXiv:1408.0872, 2014.

[11] Hanxiao Wang, Xiatian Zhu, Tao Xiang, and Shaogang Gong, "Towards unsupervised open-set person reidentification," in ICIP, 2016, pp. 769–773.

[12] Walter J Scheirer, Lalit P Jain, and Terrance E Boult, "Probability models for open set recognition," IEEE Trans. Pattern Anal. Mach. Intell., pp. 2317–2324, 2014.

[13] Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult, "The extreme value machine," IEEE Trans. Pattern Anal. Mach. Intell., pp. 762–768, 2017.

THANK YOU!

For more information, please visit: https://sites.google.com/site/ivprgroup/