Novel Quaternion Matrix Factorisations

Imperial College
London
S. Enshaeifar, C. Cheong Took, S. Sanei, and D. P. Mandic*

Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, U.K.
*Department of Electrical and Electronic Engineering, Imperial College London, London, U.K.

Outline

- The big picture
- Simultaneous diagonalisation
- Useful properties
- Simultaneous diagonalisations in \mathbb{H}
- Quaternion uncorrelating transform
- Simulations
- Experiment to assess its performance in terms of SNR and circularity.
- Alamouti-based communication problem
- Conclusion

The big picture

Quaternions are of interest in

- Computer Science
- Aeronautics
- Mathematics

Analysis in \mathbb{C} and \mathbb{H}

- Analysis of phase information $x=|x| \mathrm{e}^{\phi}$
- Complex-valued problems in communication
- Diagonalisation of covariance matrices: a widely used procedure in signal processing algorithms such as PCA and ICA

Good to know: joint diagonalisation in \mathbb{C}

- Advances in \mathbb{C} : the necessity of 'augmented statistics' to incorporate the covariance and pseudo-covariance matrices:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{z}_{r}+\imath \mathbf{z}_{\imath} \in \mathbb{C} \rightarrow\left\{\begin{array}{r}
\mathfrak{R}\{\mathbf{z}\}=\frac{1}{2}\left(\mathbf{z}+\mathbf{z}^{*}\right) \\
\mathfrak{I}\{\mathbf{z}\}=\frac{1}{2 \imath}\left(\mathbf{z}-\mathbf{z}^{*}\right)
\end{array}\right. \\
& \mathbf{C}_{\mathbf{z}}=E\left[\mathbf{z z}^{H}\right] \quad \mathbf{P}_{\mathbf{z}}=E\left[\mathbf{z z}^{T}\right] \\
& \dot{\mathbf{z}}=\left[\mathbf{z}, \mathbf{z}^{*}\right]^{T} \rightarrow \mathbf{C}_{\mathbf{z}}=\left[\begin{array}{ll}
\mathbf{C}_{\mathbf{z}} & \mathbf{P}_{\mathbf{z}} \\
\mathbf{P}_{\mathbf{z}}^{*} & \mathbf{C}_{\mathbf{z}}^{*}
\end{array}\right]
\end{aligned}
$$

Strong uncorrelating transform (SUT): joint diagonalisation of $\mathbf{C}_{\mathbf{z}}$ and $\mathbf{P}_{\mathbf{z}}$ allows for the augmented signal processing algorithms in \mathbb{C}, known as SUT.

Useful properties

- Quaternion involution $(\cdot)^{\eta}$: an important notion for \mathbb{H}

$$
\begin{gathered}
\mathbf{q}=\mathbf{q}_{r}+\imath \mathbf{q}_{\imath}+\jmath \mathbf{q}_{\jmath}+\kappa \mathbf{q}_{\kappa} \in \mathbb{H} \rightarrow\left\{\begin{array}{l}
\mathfrak{R}\{\mathbf{q}\}=\frac{1}{2}\left(\mathbf{q}+\mathbf{q}^{*}\right) \\
\mathfrak{I}_{\eta}\{\mathbf{q}\}=\frac{1}{2 \eta}\left(\mathbf{q}-\mathbf{q}^{\eta *}\right)
\end{array}\right. \\
\mathbf{q}^{\eta}=-\eta \mathbf{q} \eta, \quad \text { e.g. } \quad \mathbf{q}^{\imath}=-\imath \mathbf{q} \imath=\mathbf{q}_{r}+\imath \mathbf{q}_{\imath}-\jmath \mathbf{q}_{\jmath}-\kappa \mathbf{q}_{\kappa}
\end{gathered}
$$

- Augmented statistics are also essential for \mathbb{H} to incorporate the covariance and η-covariance matrices:

$$
\begin{gathered}
\mathbf{C}_{\mathbf{q}}=E\left[\mathbf{q q}^{H}\right] \quad \mathbf{C}_{\mathbf{q}^{\eta}}=E\left[\mathbf{q q}^{\eta H}\right] \\
\stackrel{\circ}{\mathbf{q}}=\left[\mathbf{q}, \mathbf{q}^{\imath}, \mathbf{q}^{J}, \mathbf{q}^{\kappa}\right]^{T}
\end{gathered}
$$

Quaternion uncorrelating transform (QUT): simultaneous diagonalisation of $\mathbf{C}_{\mathbf{q}}$ and $\mathbf{C}_{\mathbf{q}^{\eta}}$ represents quaternion uncorrelating transform (QUT).

Useful properties

(1) A Hermitian matrix: $\mathbf{A}=\mathbf{A}^{H} \rightarrow$ standard covariance matrix
(2) An η-Hermitian matrix: $\mathbf{A}=\mathbf{A}^{\eta H} \rightarrow \eta$-covariance matrices

$$
\begin{array}{r}
\mathbf{C}_{\mathbf{x}^{\alpha}}=E\left\{\mathbf{x x}^{\alpha H}\right\} \quad \alpha \in\{\imath, \jmath, \kappa\} \tag{1}\\
\mathbf{x} \mathbf{x}^{\alpha H}=\left[\begin{array}{cccc}
x_{1} x_{1}^{\alpha *} & x_{1} x_{2}^{\alpha *} & \cdots & x_{1} x_{N}^{\alpha *} \\
x_{2} x_{1}^{\alpha *} & x_{2} x_{2}^{\alpha *} & \cdots & x_{2} x_{N}^{\alpha *} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N} x_{1}^{\alpha *} & x_{N} x_{2}^{\alpha *} & \cdots & x_{N} x_{N}^{\alpha *}
\end{array}\right]
\end{array}
$$

Quaternion Takagi factorisation ${ }^{1}$ for η-Hermitian matrix \mathbf{A}

$$
\mathbf{A}=\mathbf{Q S}_{\eta} \mathbf{Q}^{\eta H}\left\{\begin{array}{l}
\mathbf{Q} \text { is a quaternion unitary matrix } \\
\mathbf{S}_{\eta} \text { is a real-valued non-negative diagonal matrix }
\end{array}\right.
$$

[^0]
Simultaneous diagonalisations in \mathbb{H} - case 1

Introduction of η-Hermitian: three sets of joint diagonalisation for matrices $\mathbf{A}, \mathbf{B} \in \mathbb{H}$:
(1) If \mathbf{A} and \mathbf{B} are both Hermitian, there exists a matrix $\mathbf{M} \in \mathbb{H}$ such that $\mathbf{M}^{H} \mathbf{A M}$ and $\mathbf{M}^{H} \mathbf{B M}$ are both diagonal if and only if $\mathbf{A B}$ is Hermitian, i.e. $\mathbf{A B}=\mathbf{B A}$

Since $\mathbf{A}=\mathbf{U S} \mathbf{S}_{a} \mathbf{U}^{H}$ and \mathbf{B} are both Hermitian:

$$
\mathbf{D}=\mathbf{U S}_{a}{ }^{-\frac{1}{2}} \mathbf{U}^{H} \quad \text { so }\left\{\begin{array}{c}
\mathbf{D A D}^{H}=\mathbf{I} \\
\mathbf{D B D}^{H}=\mathbf{W} \boldsymbol{\Lambda}_{b} \mathbf{W}^{H}
\end{array}\right\}
$$

consider $\mathbf{M}=\mathbf{D}^{H} \mathbf{W}$, thus:

$$
\begin{aligned}
\mathbf{M}^{H} \mathbf{A M} & =\mathbf{W}^{H} \mathbf{D} \mathbf{A D}^{H} \mathbf{W}=\mathbf{I}=\boldsymbol{\Lambda}_{a} \\
\mathbf{M}^{H} \mathbf{B M} & =\mathbf{W}^{H}\left(\mathbf{D B D}^{H}\right) \mathbf{W}=\boldsymbol{\Lambda}_{b}
\end{aligned}
$$

Simultaneous diagonalisations in \mathbb{H} - case 2

(2) If \mathbf{A} and \mathbf{B} are both η-Hermitian, there exists a unitary matrix $\mathbf{M} \in \mathbb{H}$ such that $\mathbf{M}^{\eta H} \mathbf{A M}$ and $\mathbf{M}^{\eta H} \mathbf{B M}$ are both diagonal if and only if $\mathbf{A B}{ }^{\eta}$ is normal, i.e. $\left(\mathbf{A B}^{\eta}\right)\left(\mathbf{A B}^{\eta}\right)^{H}=\left(\mathbf{A B}^{\eta}\right)^{H}\left(\mathbf{A B}^{\eta}\right)$
A single unitary matrix \mathbf{M} is sufficient to diagonalise \mathbf{A} and \mathbf{B} simultaneously.
$\mathbf{A} \stackrel{Q-\text { SVD }}{=} \mathbf{U S V}^{H}$
$\mathbf{A}^{\text {Q-Takagi }}=\mathbf{Q S Q}^{\eta H} \quad$ where $\quad\left\{\begin{array}{l}\mathbf{D}=\mathbf{V}^{\eta H} \mathbf{U} \\ \mathbf{Q}=\mathbf{U}\left(\mathbf{D}^{\eta}\right)^{\frac{1}{2}}\end{array}\right.$
Consider $\mathbf{M}=\mathbf{Q}^{\eta}$, thus:

$$
\mathbf{M}^{\eta H} \mathbf{A} \mathbf{M}=\mathbf{Q}^{H} \mathbf{A} \mathbf{Q}^{\eta}=\mathbf{Q}^{H}\left(\mathbf{Q} \mathbf{S Q}^{\eta H}\right) \mathbf{Q}^{\eta}=\mathbf{S}
$$

diagonality of $\mathbf{M}^{\eta H} \mathbf{B M}$ can be proved using the normality of $\mathbf{A B}{ }^{\eta}$

Simultaneous diagonalisations in \mathbb{H} - case 3

(3) If \mathbf{A} is Hermitian and \mathbf{B} is η-Hermitian, there exists a matrix $\mathbf{M} \in \mathbb{H}$ such that $\mathbf{M}^{H} \mathbf{A M}$ and $\mathbf{M}^{\eta H} \mathbf{B M}$ are both diagonal if and only if $\mathbf{B A}$ is η-Hermitian, i.e. $\mathbf{B A}=(\mathbf{B A})^{\eta H}=\mathbf{A}^{\eta} \mathbf{B}$
Since $\mathbf{A}=\mathbf{U S}_{a} \mathbf{U}^{H}$ is Hermitian and \mathbf{B} is η-Hermitian:

$$
\mathbf{D}=\mathbf{U S}_{a}{ }^{-\frac{1}{2}} \mathbf{U}^{H} \quad \text { so }\left\{\begin{array}{c}
\mathbf{D A D}^{H}=\mathbf{I} \\
\mathbf{D}^{\eta} \mathbf{B}\left(\mathbf{D}^{\eta}\right)^{\eta H}=\mathbf{W} \mathbf{\Lambda}_{b} \mathbf{W}^{\eta H}
\end{array}\right\}
$$

Consider $\mathbf{M}=\mathbf{D}^{H} \mathbf{W}^{\eta}$, thus:

$$
\begin{aligned}
\mathbf{M}^{H} \mathbf{A M} & =\mathbf{W}^{\eta H} \mathbf{D} \mathbf{A D}^{H} \mathbf{W}^{\eta}=\mathbf{I}=\boldsymbol{\Lambda}_{a} \\
\mathbf{M}^{\eta H} \mathbf{B M} & =\mathbf{W}^{H}\left(\mathbf{D}^{\eta} \mathbf{B D}^{H}\right) \mathbf{W}^{\eta}=\boldsymbol{\Lambda}_{b}
\end{aligned}
$$

Generalisation of case 3: quaternion uncorrelating

transform

- Assumptions in case 3: \mathbf{A} is Hermitian and \mathbf{B} is η-Hermitian
- Results of case 3: $\mathbf{M}^{H} \mathbf{A M}=\mathbf{I}$ and $\mathbf{M}^{\eta{ }^{H}} \mathbf{B M}=\boldsymbol{\Lambda}_{b}$
- Remark: In general, covariance matrix is Hermitian and η-covariance matrix is η-Hermitian

```
\Downarrow
```

Quaternion uncorrelating transform (QUT): for a random quaternion vector \mathbf{x}, there exists a QUT matrix \mathbf{M} which simultaneously whitens the covariance and diagonalises an η-covariance matrix of $\mathbf{y}=\mathbf{M}^{H} \mathbf{x}$, i.e. $\mathbf{C}_{\mathbf{y}}=\mathbf{I}$ and $\mathbf{C}_{\mathbf{y}^{\eta}}=\boldsymbol{\Lambda}_{\eta}$.

Properness and quaternion strong uncorrelating

transform

- Properness: an important statistical property in both \mathbb{C} and \mathbb{H}.
- Characterised by the degree of correlation and/or power difference
- Properness depends on the pseudo-covariance in \mathbb{C}
- Two types of properness in \mathbb{H} :
* \mathbb{H}-proper: if and only if all the η-covariance matrices vanish.
* \mathbb{C}^{η}-proper for a single imaginary unit $\eta \in\{\imath, \jmath, \kappa\}$: if only the η-covariance matrix exists and the other two vanish.
- \mathbf{x} and \mathbf{x}^{η} are correlated through the $E\left[\mathbf{x}\left(\mathbf{x}^{\eta}\right)^{H}\right]$
- The degree of \mathbb{C}-properness for a quaternion variable x is:
$\rho=\frac{\left|E\left\{x x^{\eta H}\right\}\right|}{\left|E\left\{x x^{H}\right\}\right|} \quad \rho \in[0,1]$
- For a \mathbb{C}^{η}-proper data, QUT can be considered as the quaternion strong uncorrelating transform (Q-SUT) which diagonalises the covariance and all three η-covariance matrices.

Simulation 1

Evaluate the performance accuracy in terms of

1. The additive white noise, SNR values
2. The \imath-circularity coefficient

Simulation 2: Alamouti-based coding

Assess the proposed QUT for a practical communication problem of Alamouti coding

- For a single-user, the model of two transmit antennas (a, b) and one receiver antenna:

$$
\left[\begin{array}{c}
\mathbf{x}_{a} \tag{2}\\
\mathbf{x}_{b}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{s}_{a} & -\mathbf{s}_{b}^{*} \\
\mathbf{s}_{b} & \mathbf{s}_{a}^{*}
\end{array}\right]\left[\begin{array}{c}
\Upsilon_{a} \\
\Upsilon_{b}
\end{array}\right] \in \mathbb{C}
$$

Simulation 2: Alamouti-based coding

- Model for two users:

$$
\begin{align*}
& {\left[\begin{array}{c}
\mathbf{x}_{1 a} \\
\mathbf{x}_{1 b}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{s}_{1 a} & -\mathbf{s}_{1 b}^{*} \\
\mathbf{s}_{1 b} & \mathbf{s}_{1 a}^{*}
\end{array}\right]\left[\begin{array}{c}
\Upsilon_{11 a} \\
\Upsilon_{11 b}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{s}_{2 a} & -\mathbf{s}_{2 b}^{*} \\
\mathbf{s}_{2 b} & \mathbf{s}_{2 a}^{*}
\end{array}\right]\left[\begin{array}{c}
\Upsilon_{12 a} \\
\Upsilon_{12 b}
\end{array}\right] \in \mathbb{C}} \\
& {\left[\begin{array}{l}
\mathbf{x}_{2 a} \\
\mathbf{x}_{2 b}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{s}_{1 a} & -\mathbf{s}_{1 b}^{*} \\
\mathbf{s}_{1 b} & \mathbf{s}_{1 a}^{*}
\end{array}\right]\left[\begin{array}{l}
\Upsilon_{21 a} \\
\Upsilon_{21 b}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{s}_{2 a} & -\mathbf{s}_{2 b}^{*} \\
\mathbf{s}_{2 b} & \mathbf{s}_{2 a}^{*}
\end{array}\right]\left[\begin{array}{c}
\Upsilon_{22 a} \\
\Upsilon_{22 b}
\end{array}\right] \in \mathbb{C}} \tag{3}\\
& {\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\Upsilon_{11} & \Upsilon_{12} \\
\Upsilon_{21} & \Upsilon_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{s}_{1} \\
\mathbf{s}_{2}
\end{array}\right] \in \mathbb{H} \quad\left\{\begin{array}{l}
\mathbf{x}_{i}=\mathbf{x}_{i_{a}}+\mathbf{x}_{i_{b} \jmath} \\
\mathbf{s}_{i}=\mathbf{s}_{i_{a}}+\mathbf{s}_{i_{b} J}
\end{array}\right.}
\end{align*}
$$

Quaternion-valued mixing matrix Υ and $\mathbf{s}_{1_{a}}=\mathbf{s}_{1_{b}}$

Complex-valued mixing matrix Υ and $\mathbf{s}_{1_{a}} \neq \mathbf{s}_{1_{b}}$

Complex-valued mixing matrix Υ and $\mathbf{s}_{1_{a}}=\mathbf{s}_{1_{b}}$

Complex

QUT

Conclusion

1. A set of matrix decompositions for the joint diagonalisation of quaternion covariance matrices which satisfy:

- $\mathbf{A B}=\mathbf{B A}$
- normality of $\mathbf{A B}^{\eta}$
- $\mathbf{B A}=\mathbf{A}^{\eta} \mathbf{B}$

2. MATLAB code available at my website ${ }^{2}$
3. Open problem 1: How to diagonalise a quaternion symmetric matrix $\mathbf{A}=\mathbf{A}^{T}$?
4. Open problem 2: How to simultaneously diagonalise three and four quaternion matrices with different structures?
[^1]
References

Thank you for your kind attention...

[1] R. A. Horn and C. R. Johnson, "Matrix analysis." Cambridge university press, 2012.
[2] C. C. Took, D. P. Mandic, and F. Zhang, "On the unitary diagonalisation of a special class of quaternion matrices." Applied Mathematics Letters, vol. 24, no. 11, pp. 18061809, 2011.
[3] Horn, Roger A., and Fuzhen Zhang. "A generalization of the complex Autonne-Takagi factorization to quaternion matrices." Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 12391244, 2012.
[4] S. Sangwine and N. L. Bihan, "Quaternion singular value decomposition based on bidiagonalization to a real matrix using quaternion Householder transformations." Applied Mathematics and Computation, vol. 182, pp. 727738, 2006.
[5] J. Via, D. P. Palomar, L. Vielva, and I. Santamaria. "Quaternion ICA from second-order statistics." IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1586-1600, 2011.

1. Generate three ARMA sources $\mathfrak{s}_{d} \in \mathbb{H}^{1 \times N}, \quad d=\{1,2,3\}$
2. To obtain uncorrelated \mathbb{C}^{2}-proper sources, their real and imaginary parts were considered as real-valued signals and the following steps were applied:
3. $\mathfrak{S}=\left[\mathfrak{s}_{1} ; \mathfrak{s}_{1_{\imath}} ; \mathfrak{s}_{1_{\jmath}} ; \mathfrak{s}_{1} ; \mathfrak{s}_{2 r} ; \mathfrak{s}_{2} ; \mathfrak{s}_{2_{\jmath}} ; \mathfrak{s}_{2_{\kappa}} ; \mathfrak{s}_{3_{r}} ; \mathfrak{s}_{3_{\imath}} ; \mathfrak{s}_{3_{\jmath}} ; \mathfrak{s}_{3_{\kappa}}\right]$
4. $\mathbf{C}_{\mathfrak{S}}=\mathfrak{S} \mathfrak{S}^{T}$
5. $[\mathbf{U}, \boldsymbol{\Lambda}]=\operatorname{svd}\left(\mathbf{C}_{\mathfrak{S}}\right)$
6. $\tilde{\mathfrak{S}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \mathbf{U}^{T} \mathfrak{S}$
7. Produce the desired covariance matrix $\mathbf{C}_{\mathfrak{D}} \in \mathbb{R}^{12 \times 12}$

$$
\mathbf{C}_{\mathfrak{D}}=\left[\begin{array}{c|c|c}
\mathbf{C}_{\mathfrak{s}} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{C}_{\mathfrak{s}} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{C}_{\mathfrak{s}}
\end{array}\right], \quad \mathbf{C}_{\mathfrak{s}}=\left[\begin{array}{cccc}
1 & 0 & 0 & \rho_{\imath} \\
0 & 1 & \rho_{\imath} & 0 \\
0 & \rho_{\imath} & 1 & 0 \\
\rho_{\imath} & 0 & 0 & 1
\end{array}\right]
$$

in which the zero matrix $\mathbf{0}$ is used to provide uncorrelatedness, and $\mathbf{C}_{\mathfrak{s}} \in \mathbb{R}^{4 \times 4}$ is used to satisfy the \mathbb{C}^{2}-properness with specific \imath-circularity coefficient.
6. $\left[\mathbf{U}_{\mathfrak{D}}, \boldsymbol{\Lambda}_{\mathfrak{D}}\right]=\operatorname{svd}\left(\mathbf{C}_{\mathfrak{D}}\right)$
7. $\mathbf{S}=\mathbf{U}_{\mathfrak{D}} \Lambda_{\mathfrak{D}}^{\frac{1}{2}} \tilde{\mathfrak{S}}=\left[\mathbf{s}_{1_{r}} ; \mathbf{s}_{1_{\imath}} ; \mathbf{s}_{1_{\jmath}} ; \mathbf{s}_{1_{\kappa}} ; \mathbf{s}_{2_{r}} ; \mathbf{s}_{2_{\imath}} ; \mathbf{s}_{2_{\jmath}} ; \mathbf{s}_{2_{\kappa}} ; \mathbf{s}_{3_{r}} ; \mathbf{s}_{3_{\imath}} ; \mathbf{s}_{3_{\jmath}} ; \mathbf{s}_{3_{\kappa}}\right]$
8. $\mathbf{s}_{d}=\mathbf{s}_{d r}+\imath \mathbf{s}_{d_{\imath}}+\jmath \mathbf{s}_{d_{\jmath}}+\kappa \mathbf{s}_{d_{\kappa}}, \quad d=\{1,2,3\}$
3. Using the above sources, generate inputs $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3}

Consider three univariate quaternion-valued sources as:

$$
\left\{\begin{array}{l}
\mathbf{x}=\mathbf{x}_{r}+\imath \mathbf{x}_{\imath}+\jmath \mathbf{x}_{\jmath}+\kappa \mathbf{x}_{\kappa} \tag{4}\\
\mathbf{y}=\mathbf{y}_{r}+\imath \mathbf{y}_{\imath}+\jmath \mathbf{y}_{\jmath}+\kappa \mathbf{y}_{\kappa} \\
\mathbf{z}=\mathbf{z}_{r}+\imath \mathbf{z}_{\imath}+\jmath \mathbf{z}_{\jmath}+\kappa \mathbf{z}_{\kappa}
\end{array} \in \mathbb{H}^{1 \times N}\right.
$$

To obtain the real-valued covariance matrix, consider the quadrivariate correspondence of each source ($\mathbf{x}_{\mathbb{R}}$, $\mathbf{y}_{\mathbb{R}}, \mathbf{z}_{\mathbb{R}}$) and generate the 12×12 covariance matrix in \mathbb{R} :

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{x}_{\mathbb{R}} \tag{5}\\
\mathbf{y}_{\mathbb{R}} \\
\mathbf{z}_{\mathbb{R}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{r} \\
\mathbf{x}_{\imath} \\
\mathbf{x}_{\jmath} \\
\mathbf{x}_{\kappa} \\
\hline \mathbf{y}_{r} \\
\mathbf{y}_{\imath} \\
\mathbf{y}_{\jmath} \\
\mathbf{y}_{\kappa} \\
\hline \mathbf{z}_{r} \\
\mathbf{z}_{\imath} \\
\mathbf{z}_{\jmath} \\
\mathbf{z}_{\kappa}
\end{array}\right] \quad \rightarrow \quad \mathbf{C}_{\mathbf{w}}=E\left[\mathbf{W} \mathbf{W}^{T}\right]=E\left[\begin{array}{c|c|c}
\mathbf{x}_{\mathbb{R}} \mathbf{x}_{\mathbb{R}}^{T} & \mathbf{x}_{\mathbb{R}} \mathbf{y}_{\mathbb{R}}^{T} & \mathbf{x}_{\mathbb{R}} \mathbf{z}_{\mathbb{R}}^{T} \\
\hline \mathbf{y}_{\mathbb{R}} \mathbf{x}_{\mathbb{R}}^{T} & \mathbf{y}_{\mathbb{R}} \mathbf{y}_{\mathbb{R}}^{T} & \mathbf{y}_{\mathbb{R}} \mathbf{z}_{\mathbb{R}}^{T} \\
\hline \mathbf{z}_{\mathbb{R}} \mathbf{x}_{\mathbb{R}}^{T} & \mathbf{z}_{\mathbb{R}} \mathbf{y}_{\mathbb{R}}^{T} & \mathbf{z}_{\mathbb{R}} \mathbf{z}_{\mathbb{R}}^{T}
\end{array}\right]
$$

(6)

If three uncorrelated \mathbb{C}^{2}-proper sources are generated, the following observations on the structure of the covariance can be made:

- The off diagonal blocks in $\mathbf{C}_{\mathbf{w}}$ are zero, since sources are uncorrelated with regard to each other.
- The diagonal blocks have the following algebraic structure in order to satisfy the \mathbb{C}^{2}-properness condition with specific values ρ.

$$
\mathbf{C}_{\mathfrak{S}}=\left[\begin{array}{llll}
1 & 0 & 0 & \rho \tag{7}\\
0 & 1 & \rho & 0 \\
0 & \rho & 1 & 0 \\
\rho & 0 & 0 & 1
\end{array}\right]
$$

Based on the matrix $\mathbf{C}_{\mathfrak{s}}$, the covariance matrices of each source are defined as:

$$
\begin{equation*}
\mathbf{C}_{\mathbf{q}}=4 \mathbf{I}, \quad \mathbf{C}_{\mathbf{q}^{\imath}}=\kappa(4 \rho) \mathbf{I}, \quad \mathbf{C}_{\mathbf{q}^{\jmath}}=\mathbf{C}_{\mathbf{q}^{\kappa}}=\mathbf{0}, \quad \mathbf{q} \in\{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \tag{8}
\end{equation*}
$$

The final structure of the covariance matrix is given by:

$$
\mathrm{C}_{\mathbf{w}}=\left[\begin{array}{c|c|c}
\mathrm{C}_{\mathfrak{s}} & 0 & 0 \tag{9}\\
\hline 0 & \mathrm{C}_{\mathfrak{s}} & 0 \\
\hline 0 & 0 & \mathrm{C}_{\mathfrak{s}}
\end{array}\right]
$$

Table 1: The standard and η-covariance matrices of \mathbf{q} in terms of its real components.

	C_{q}	$\mathrm{C}_{\mathrm{q}^{2}}$
	$E\left[\mathbf{q}_{r} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{\imath} \mathbf{q}_{l}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{j}^{T}\right]+E\left[\mathbf{q}_{\kappa} \mathbf{q}_{\kappa}^{T}\right]$	[$E\left[\mathbf{q}_{r} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{\imath} \mathbf{q}_{l}^{T}\right]-E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\jmath}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{\kappa}^{T}\right]$
	E $\left[\mathbf{q}_{\imath} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{l}^{T}\right]+E\left[\mathbf{q}_{\kappa} \mathbf{q}_{J}^{T}\right]-E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\kappa}^{T}\right]$	E[$\left.\mathbf{q}_{\imath} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{l}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\kappa}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{J}^{T}\right]$
	$E\left[\mathbf{q}_{\jmath} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{j}^{T}\right]+E\left[\mathbf{q}_{\imath} \mathbf{q}_{\kappa}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{l}^{T}\right]$, $E\left[\mathbf{q}_{r} \mathbf{q}_{J}^{T}\right]+E\left[\mathbf{q}_{J} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{l}^{T}\right]-E\left[\mathbf{q}_{\imath} \mathbf{q}_{\kappa}^{T}\right]$
s_{κ}	$E\left[\mathbf{q}_{\kappa} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{\kappa}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{2}^{T}\right]-E\left[\mathbf{q}_{\imath} \mathbf{q}_{j}^{T}\right]$	$\underline{E}\left[\mathbf{q}_{\kappa} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{r} \mathbf{q}_{\kappa}^{T}\right]+E\left[\mathbf{q}_{\imath} \mathbf{q}_{j}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\imath}^{T}\right]$
	$\mathrm{C}_{\mathbf{q}}$ J	$\mathrm{C}_{\mathbf{q}^{\kappa}}$
	$E\left[\mathbf{q}_{r} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{\imath} \mathbf{q}_{\imath}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{j}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{\kappa}^{T}\right]$	[$E\left[\mathbf{q}_{r} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{\imath} \mathbf{q}_{l}^{T}\right]-E\left[\mathbf{q}_{\jmath} \mathbf{q}_{J}^{T}\right]+E\left[\mathbf{q}_{\kappa} \mathbf{q}_{\kappa}^{T}\right]$
$s_{2} \cdot$	$E\left[\mathbf{q}_{\imath} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{r} \mathbf{q}_{\imath}^{T}\right]+E\left[\mathbf{q}_{\kappa} \mathbf{q}_{J}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\kappa}^{T}\right]$] $E\left[\mathbf{q}_{\imath} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{r} \mathbf{q}_{2}^{T}\right]-E\left[\mathbf{q}_{J} \mathbf{q}_{\kappa}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{J}^{T}\right]$
	$E\left[\mathbf{q}_{J} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{J}^{T}\right]-E\left[\mathbf{q}_{\kappa} \mathbf{q}_{l}^{T}\right]+E\left[\mathbf{q}_{l} \mathbf{q}_{\kappa}^{T}\right]$	${ }^{\text {che }}\left[\mathbf{q}_{r} \mathbf{q}_{\jmath}^{T}\right]+E\left[\mathbf{q}_{\jmath} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{\kappa} \mathbf{q}_{l}^{T}\right]+E\left[\mathbf{q}_{\iota} \mathbf{q}_{\kappa}^{T}\right]$
$\mathrm{S}_{\kappa}[\cdot]$	$E\left[\mathbf{q}_{\kappa} \mathbf{q}_{r}^{T}\right]+E\left[\mathbf{q}_{r} \mathbf{q}_{\kappa}^{T}\right]-E\left[\mathbf{q}_{\imath} \mathbf{q}_{J}^{T}\right]-E\left[\mathbf{q}_{\jmath} \mathbf{q}_{\imath}^{T}\right]$	${ }^{\text {r }}$ [$\left.\mathbf{q}_{\kappa} \mathbf{q}_{r}^{T}\right]-E\left[\mathbf{q}_{r} \mathbf{q}_{\kappa}^{T}\right]+E\left[\mathbf{q}_{\imath} \mathbf{q}_{j}^{T}\right]-E\left[\mathbf{q}_{\jmath} \mathbf{q}_{2}^{T}\right]$

[^0]: ${ }^{1}$ MATLAB code available at http://www.surrey.ac.uk/cs/people/clive_cheong_took/index.htm

[^1]: ${ }^{2}$ MATLAB code available at http://www.surrey.ac.uk/cs/people/clive_cheong_took/index.htm

