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The big picture

Quaternions are of interest in

• Computer Science

• Aeronautics

• Mathematics

Analysis in C and H

• Analysis of phase information x = |x|eφ

• Complex-valued problems in communication

• Diagonalisation of covariance matrices: a widely used procedure in
signal processing algorithms such as PCA and ICA
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Good to know: joint diagonalisation in C

• Advances in C: the necessity of ‘augmented statistics’ to incorporate
the covariance and pseudo-covariance matrices:

z = zr + ızı ∈ C →

{

R{z} = 1
2(z+ z∗)

I{z} = 1
2ı(z− z∗)

Cz = E[zzH] Pz = E[zzT ]

z̊ = [z, z∗]T → Cz̊ =

[

Cz Pz

P∗
z C∗

z

]

Strong uncorrelating transform (SUT): joint diagonalisation of Cz and Pz

allows for the augmented signal processing algorithms in C, known as SUT.
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Useful properties

• Quaternion involution (·)η: an important notion for H

q = qr + ıqı + q + κqκ ∈ H →

{

R{q} = 1
2(q+ q∗)

Iη{q} = 1
2η(q− qη∗)

qη = −ηqη, e.g. qı = −ıqı = qr + ıqı − q − κqκ

• Augmented statistics are also essential for H to incorporate the
covariance and η-covariance matrices:

Cq = E[qqH] Cqη = E[qqηH]

q̊ = [q,qı,q,qκ]T

Quaternion uncorrelating transform (QUT): simultaneous diagonalisation
of Cq and Cqη represents quaternion uncorrelating transform (QUT).
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Useful properties

(1) A Hermitian matrix: A = AH → standard covariance matrix

(2) An η-Hermitian matrix: A = AηH → η-covariance matrices

Cxα = E{xxαH} α ∈ {ı, , κ} (1)

xxαH =









x1x1
α∗ x1x2

α∗ · · · x1xN
α∗

x2x1
α∗ x2x2

α∗ · · · x2xN
α∗

... ... . . . ...
xNx1

α∗ xNx2
α∗ · · · xNxN

α∗









Quaternion Takagi factorisation1 for η-Hermitian matrix A

A = QSηQ
ηH

{

Q is a quaternion unitary matrix

Sη is a real-valued non-negative diagonal matrix

1MATLAB code available at http://www.surrey.ac.uk/cs/people/clive_cheong_took/index.htm
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Simultaneous diagonalisations in H - case 1

Introduction of η-Hermitian: three sets of joint diagonalisation for matrices
A,B ∈ H:

(1) If A and B are both Hermitian, there exists a matrix M ∈ H such that
MHAM and MHBM are both diagonal if and only if AB is Hermitian,
i.e. AB = BA

Since A = USaU
H and B are both Hermitian:

D = USa
−1

2UH so

{

DADH = I

DBDH = WΛbW
H

}

consider M = DHW, thus:

MHAM = WHDADHW = I = Λa

MHBM = WH(DBDH)W = Λb
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Simultaneous diagonalisations in H - case 2

(2) If A and B are both η-Hermitian, there exists a unitary matrix M ∈ H

such that MηHAM and MηHBM are both diagonal if and only if ABη is
normal, i.e. (ABη)(ABη)H = (ABη)H(ABη)

A single unitary matrix M is sufficient to diagonalise A and B

simultaneously.

A
Q-SVD
= USVH

A
Q-Takagi
= QSQηH where

{

D = VηHU

Q = U(Dη)
1
2

Consider M = Qη, thus:

MηHAM = QHAQη = QH(QSQηH)Qη = S

diagonality of MηHBM can be proved using the normality of ABη
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Simultaneous diagonalisations in H - case 3

(3) If A is Hermitian and B is η-Hermitian, there exists a matrix M ∈ H

such that MHAM and MηHBM are both diagonal if and only if BA is
η-Hermitian, i.e. BA = (BA)ηH = AηB

Since A = USaU
H is Hermitian and B is η-Hermitian:

D = USa
−1

2UH so

{

DADH = I

DηB(Dη)ηH = WΛbW
ηH

}

Consider M = DHWη, thus:

MHAM = WηHDADHWη = I = Λa

MηHBM = WH(DηBDH)Wη = Λb
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Generalisation of case 3: quaternion uncorrelating

transform

• Assumptions in case 3: A is Hermitian and B is η-Hermitian

• Results of case 3: MHAM = I and MηHBM = Λb

• Remark: In general, covariance matrix is Hermitian and η-covariance
matrix is η-Hermitian

w

�

Quaternion uncorrelating transform (QUT): for a random quaternion
vector x, there exists a QUT matrix M which simultaneously whitens the
covariance and diagonalises an η-covariance matrix of y = MHx, i.e.
Cy = I and Cyη = Λη.
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Properness and quaternion strong uncorrelating

transform

- Properness: an important statistical property in both C and H.
- Characterised by the degree of correlation and/or power difference
- Properness depends on the pseudo-covariance in C

- Two types of properness in H:

* H-proper: if and only if all the η-covariance matrices vanish.

* C
η-proper for a single imaginary unit η ∈ {ı, , κ}: if only the

η-covariance matrix exists and the other two vanish.
- x and xη are correlated through the E[x(xη)H]

- The degree of C-properness for a quaternion variable x is:

ρ = |E{xxηH}|

|E{xxH}|
ρ ∈ [0, 1]

- For a C
η-proper data, QUT can be considered as the quaternion strong

uncorrelating transform (Q-SUT) which diagonalises the covariance and all
three η-covariance matrices.
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Simulation 1

Evaluate the performance accuracy in terms of

1. The additive white noise, SNR values

2. The ı-circularity coefficient
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Simulation 2: Alamouti-based coding

Assess the proposed QUT for a practical communication problem of
Alamouti coding

• For a single-user, the model of two transmit antennas (a, b) and one
receiver antenna:

[

xa

xb

]

=

[

sa −s∗b
sb s∗a

] [

Υa

Υb

]

∈ C (2)
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Simulation 2: Alamouti-based coding

• Model for two users:

[

x1a

x1b

]

=

[

s1a −s∗1b
s1b s∗1a

] [

Υ11a

Υ11b

]

+

[

s2a −s∗2b
s2b s∗2a

] [

Υ12a

Υ12b

]

∈ C

[

x2a

x2b

]

=

[

s1a −s∗1b
s1b s∗1a

] [

Υ21a

Υ21b

]

+

[

s2a −s∗2b
s2b s∗2a

] [

Υ22a

Υ22b

]

∈ C

[

x1

x2

]

=

[

Υ11 Υ12

Υ21 Υ22

] [

s1
s2

]

∈ H

{

xi = xia + xib

si = sia + sib

(3)
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Quaternion-valued mixing matrix Υ and s1a = s1b

Original
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ĉ
2
a

−5 0 5
−0.1

0

0.1

ĉ
2
b

QUT

−2 0 2
−0.02

0

0.02

x̂
1
a

−2 0 2
−0.02

0

0.02

x̂
1
b

−2 0 2
−0.02

0

0.02

x̂
2
a

−2 0 2
−0.02

0

0.02

x̂
2
b

Clive Cheong Took ICASSP 2016 15



Complex-valued mixing matrix Υ and s1a 6= s1b

Original
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ĉ
1
b

−2 0 2
−0.05

0

0.05

ĉ
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Complex-valued mixing matrix Υ and s1a = s1b

Original
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Conclusion

1. A set of matrix decompositions for the joint diagonalisation of
quaternion covariance matrices which satisfy:

• AB = BA

• normality of ABη

• BA = AηB

2. MATLAB code available at my website2

3. Open problem 1: How to diagonalise a quaternion symmetric matrix
A = AT?

4. Open problem 2: How to simultaneously diagonalise three and four
quaternion matrices with different structures?

2MATLAB code available at http://www.surrey.ac.uk/cs/people/clive_cheong_took/index.htm
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1. Generate three ARMA sources sd ∈ H
1×N , d = {1, 2, 3}

2. To obtain uncorrelated C
ı-proper sources, their real and imaginary parts were considered as real-valued

signals and the following steps were applied:

1. S = [s1r ; s1ı; s1; s1κ; s2r ; s2ı; s2; s2κ; s3r ; s3ı; s3; s3κ]

2. CS = SS
T

3. [U,Λ] = svd(CS)

4. S̃ = Λ
−1
2UT

S

5. Produce the desired covariance matrix CD ∈ R
12×12

CD =





Cs 0 0

0 Cs 0

0 0 Cs



, Cs =









1 0 0 ρı
0 1 ρı 0
0 ρı 1 0
ρı 0 0 1









in which the zero matrix 0 is used to provide uncorrelatedness, and Cs ∈ R
4×4 is used to satisfy the

C
ı-properness with specific ı-circularity coefficient.

6. [UD,ΛD] = svd(CD)

7. S = UDΛ
1
2
D
S̃ = [s1r ; s1ı; s1; s1κ; s2r ; s2ı; s2; s2κ; s3r ; s3ı; s3; s3κ]

8. sd = sdr + ısdı + sd + κsdκ, d = {1, 2, 3}

3. Using the above sources, generate inputs x1, x2, and x3
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Consider three univariate quaternion-valued sources as:











x = xr + ıxı + x + κxκ

y = yr + ıyı + y + κyκ

z = zr + ızı + z + κzκ

∈ H
1×N

(4)

To obtain the real-valued covariance matrix, consider the quadrivariate correspondence of each source (xR,
yR, zR) and generate the 12 × 12 covariance matrix in R:

W =





xR
yR
zR



 =











































xr
xı
x
xκ

yr
yı
y
yκ

zr
zı
z
zκ











































→ Cw = E[WW
T ] = E







xRx
T
R

xRy
T
R

xRz
T
R

yRx
T
R

yRy
T
R

yRz
T
R

zRx
T
R

zRy
T
R

zRz
T
R






(5)
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E
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If three uncorrelated C
ı-proper sources are generated, the following observations on the structure of the covariance can be made:

• The off diagonal blocks in Cw are zero, since sources are uncorrelated with regard to each other.

• The diagonal blocks have the following algebraic structure in order to satisfy the C
ı-properness condition with specific values

ρ.

Cs =









1 0 0 ρ

0 1 ρ 0
0 ρ 1 0
ρ 0 0 1









(7)

Based on the matrix Cs, the covariance matrices of each source are defined as:

Cq = 4I, Cqı = κ(4ρ)I, Cq = Cqκ = 0, q ∈ {x, y, z} (8)

The final structure of the covariance matrix is given by:

Cw =





Cs 0 0

0 Cs 0

0 0 Cs



 (9)
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Table 1: The standard and η-covariance matrices of q in terms of its real
components.

Cq Cqı

R[·]E[qrq
T
r ] + E[qıq

T
ı ] + E[qq

T
 ] + E[qκq

T
κ ]E[qrq

T
r ] + E[qıq

T
ı ] − E[qq

T
 ] − E[qκq

T
κ ]

Iı[·]E[qıq
T
r ] − E[qrq

T
ı ] + E[qκq

T
 ] − E[qq

T
κ ]E[qıq

T
r ] − E[qrq

T
ı ] + E[qq

T
κ ] − E[qκq

T
 ]

I[·]E[qq
T
r ] − E[qrq

T
 ] + E[qıq

T
κ ] − E[qκq

T
ı ]E[qrq

T
 ] + E[qq

T
r ] − E[qκq

T
ı ] − E[qıq

T
κ ]

Iκ[·]E[qκq
T
r ] − E[qrq

T
κ ] + E[qq

T
ı ] − E[qıq

T
 ]E[qκq

T
r ] + E[qrq

T
κ ] + E[qıq

T
 ] + E[qq

T
ı ]

Cq Cqκ

R[·]E[qrq
T
r ] − E[qıq

T
ı ] + E[qq

T
 ] − E[qκq

T
κ ]E[qrq

T
r ] − E[qıq

T
ı ] − E[qq

T
 ] + E[qκq

T
κ ]

Iı[·]E[qıq
T
r ] + E[qrq

T
ı ] + E[qκq

T
 ] + E[qq

T
κ ]E[qıq

T
r ] + E[qrq

T
ı ] − E[qq

T
κ ] − E[qκq

T
 ]

I[·]E[qq
T
r ] − E[qrq

T
 ] − E[qκq

T
ı ] + E[qıq

T
κ ]E[qrq

T
 ] + E[qq

T
r ] + E[qκq

T
ı ] + E[qıq

T
κ ]

Iκ[·]E[qκq
T
r ] + E[qrq

T
κ ] − E[qıq

T
 ] − E[qq

T
ı ]E[qκq

T
r ] − E[qrq

T
κ ] + E[qıq

T
 ] − E[qq

T
ı ]
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