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Introduction Smart City 
Server

Bottleneck

https://springml.com/blog/using-object-detection-potholes/ https://www.smartcitiesworld.net/news/news/ai-equals-a-greener-life-for-trondheim-2407

Platform CPU GPU Inference Time (s)

Raspberry PI 0.6 No 360

PC 1.596 No 29

Low-end Server 1.386 Yes 0.2

Machine 
Learning

Crowdsourcing

Edge 
Computing

Improvements in 
hardware and 
software

Convolutional 
Neural Networks 

Ubiquity of 
mobile users

Heterogeneous Devices

https://springml.com/blog/using-object-detection-potholes/
https://www.smartcitiesworld.net/news/news/ai-equals-a-greener-life-for-trondheim-2407
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Introduction
• Cameras are now able to capture videos at a frame rate of 24-60 

FPS

• A CNN can process such visual data volume at this rate with 
powerful GPU/CPU

Ø Centralized Server cannot scale as number of devices increases
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Example
• Consider a smart city application for Los Angeles Sanitation (LASAN) 

Department

• LASAN installs 4-8 cameras at different angles on a sanitary trucks to 
monitor and prioritize the street cleaning

• LASAN operates more than 750 trucks

Ø The network and server will be overwhelmed
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Problem definition
• Edge devices cannot feed the entire video frames to the 

Convolutional Neural Network
– Lots of computing power
– Lots of redundancy
– Run one inference per few milliseconds to few minutes

• Goal: Select subset of video frames to feed to 
classification/object detection models

Ø Need a method to select “meaningful” keyframes
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Spatial Keyframe Extraction Algorithm
• Properties

– Leverages the geospatial metadata of video 
frames
• Becomes a coverage problem

– Considers the residual overlap weight of 
selected frames

– Supports processing capacity of 
heterogeneous devices

Ø But how to select frames without ”seeing” 
the frames?
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Definitions – FOV & CMBR
• Sensor-equipped cameras can enrich the 

captured video:
– with GPS location (up to per second)
– with Camera viewing direction (per few 

microsecond)

• Field-Of-View: A video 𝑣 is represented as a set of individual video frames (or FOVs) 𝐹 =
𝑓!, 𝑓", … , 𝑓#, … , 𝑓$ , 𝒇𝒊 =< 𝒑, 𝜽, 𝐑, 𝜶 > ordered by the time 𝑡# at which the frame was 

captured. 
• Coverage Minimum Bounding Rectangle: Given a set of FOVs 𝐹, the CMBR is the 

minimum bounding box which contains all FOVs.
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Definitions – Grid & Cells
• Coverage Grid: Given a CMBR and cell size w, we partition the 

CMBR into a set of square cells 𝐺 = 𝑐!, 𝑐", … , 𝑐& of width w
forming the Coverage Grid.

• Cell Set: Given a set of FOVs 𝐹 and the grid 𝐺, the Coverage 
Cell Set 𝐶 ⊆ 𝐺 contains all the cells which are covered by at 
least one FOV. 

• Cell Spatial Weight: The between the camera location of FOV 
𝑓# and the cell center 𝑐'

𝑤#,' = 41 −
𝑑 𝑓#. 𝑝, 𝑐'. 𝑝

𝑓#. 𝑅
, 𝑖𝑓 𝑑 𝑓#. 𝑝, 𝑐'. 𝑝 ≤ 𝑓#. 𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Definitions – Overlap function & residual weight
• Cell Overlap Weight Function: A function 𝑓: 𝑋 → 𝑌 which defines what is the new spatial 

weight of the cell when multiple FOVs cover it and are selected by the solution.

– 𝑋 = 𝑥 ∈ ℝ !!
"
|𝑥 = 𝑤",$ , 𝑓" ∈ 𝐹$%, 𝑐$ ∈ 𝐶"

– 𝑌 = 𝑦 ∈ ℝ| 0 ≤ 𝑦 ≤ 1

• Residual Overlap Weight: For a current frame selection 𝑆, the residual overlap weight for 
𝑓# and its cells 𝐶# is computed as follows: 

– for cells 𝑐$ ∈ 𝐶" not covered by any other FOV already in 𝑆, the residual weight 𝑤",$& is equal to 𝑤",$
– Otherwise, use 𝑓 to calculate 𝑤",$

' assuming 𝑓! was added in 𝑆, 𝑤",$& = 𝑤",$
' − 𝑤",$

Ø A new FOV increases the total weight by only the weight difference
Ø Now we can define as a coverage problem
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Maximum Weighted Overlap Coverage Problem
• Given a set of FOVs 𝐹 = 𝑓!, 𝑓", … , 𝑓# , … , 𝑓$ , the weights 𝑤#,& , the cell 

overlap weight function 𝑓, the set of covered cells 𝐶# = 𝑐!, 𝑐", … , 𝑐'
for each FOV, the maximum budget for frames 𝐵, the Maximum Weighted 
Overlap Coverage Problem (MWOCP) finds a subset 𝐹# s.t. 𝐹( ≤
𝐵 which maximizes the weighted sum of covered cells in the sets 𝐹&(.

• MWOCP is NP-Hard
– Reduction from Maximum Coverage Problem (MCP)

Ø Greedy-SKE solution is proposed
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Greedy-SKE Time Complexity
• n = |F| FOVs
• m = |C| covered grid cells
• B budget
• Find uncovered cells O(m’), m’ << m
• Find covered cells O(m’’), m’’ << m
• Compute residual O(m’’)
• Runs in 𝑂 𝐵 # 𝑛 # max m’,m’’ ≤ 𝑂(𝑛! # 𝑚)
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Baselines - Greedy-Naive
• Uses a max-heap to get cells in order based on their cumulative spatial 

weight of all FOVs. For the current cell 𝑐", a random FOV 𝑓# ∈ 𝐹" is selected 
and added to the solution S. 

• Additionally, all cells 𝑐$ ∈ 𝐶# are removed from the heap. The algorithm 
stops when budget 𝐵 is reached or the heap is emptied.
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Baselines - Clustering
• A set of frames are sampled every half-second. 
• Generate histogram of 50 bins is constructed from the HSV color space [1] 

(20-20-10 bins for each component, respectively)
• Use histogram as feature vector
• Use k-means with k=B,  the budget value 
• Extract the closest frame from each cluster centroid

[1] Sandra Eliza Fontes de Avila, Ana Paula Brand ̃ao Lopes, Anto-nio da Luz, and Arnaldo de Albuquerque Ara ́ujo, “Vsumm: A mechanism designed to produce static video summaries 
and a novel evaluation method, ”Pattern Recognition Letters, vol. 32,no. 1, pp. 56 – 68, 2011, Image Processing, Computer Vision and Pattern Recognition in Latin America.

HSV 
Histogram Features

Frame 1
Frame 2
…
Frame n

Frame 1
Frame 15
…
Frame n

Sample
Frames

Frame 1
Frame 2
…
Frame B

Extract
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Baselines - Temporal
• Selects frames based on a predefined sampling rate 𝑡%

– e.g., 2 frames per second

• 𝑡% can be adjusted in a way, such that it matches the processing capacity of 
an edge device
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Baselines - Trajectory-SKE
• Selects frames based on the camera location of the FOV metadata.
• Sort frames by capture time
• A user-defined radius threshold 𝑡& is used to determine whether the 

camera location of the frame is farther than the previous frame's radius
• Sampling the trajectory by adjusting 𝑡& ensures that the selected frames 

are captured at different locations
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Experimental Setup
• Collected 25 FHD videos at 30FPS along with their FOV metadata

– generating 69K frames (2872 frames per video on average)

• All videos were recorded so that they intentionally contain some frames 
that capture a Starbucks coffee shop
– Q: how efficiently detect Starbucks logos from the collected videos?

• Used Google Vision API to detect the Starbucks logo for each frame in 
every video and log the detected frames with a confidence≥70%
– resulting to 5.5K frames (~8% of total frames)

• Experiments on Ubuntu Desktop and Raspberry Pi 3 Model B
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Logo Visibility Example in Starbucks experiment
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Experimental Results - Performance

• Clustering approach suffers the most
– 2x slower

• Greedy-SKE needs 1sec on RPI, 100ms on desktop for 50 frames

Desktop Raspberry Pi
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Experimental Results – Spatial Weight Impact

• K < B observation
• Greedy-SKE outperforms others

• Greedy-SKE detect the logo in:
• 66% of videos w/ 6 frames in 17ms
• 75% of videos w/ 10 frames in 26ms
• 80% of videos w/ 15 frames in 39ms
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Conclusion
• Use spatial metadata to speedup frame selection

• Introduce Maximum Weighted Overlap Coverage Problem
– Greedy solution is fast even on resource-constraint devices

• Experimental results on real video dataset show effectiveness of approach 
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