
8/20/20 1
1

Spatial Keyframe Extraction of Mobile Videos for
Efficient Object Detection at the Edge

George Constantinou, Cyrus Shahabi, Seon Ho Kim

Integrated Media Systems Center (IMSC)
University of Southern California,

Los Angeles, CA, USA

Session Title: ARS-04: Image & Video Interpretation and Understanding

8/20/20 2
2

Outline

qIntroduction
qProblem definition
qSpatial Keyframe Extraction
qExperiments
qFuture Directions

8/20/20 3
3

Introduction Smart City
Server

Bottleneck

https://springml.com/blog/using-object-detection-potholes/ https://www.smartcitiesworld.net/news/news/ai-equals-a-greener-life-for-trondheim-2407

Platform CPU GPU Inference Time (s)

Raspberry PI 0.6 No 360

PC 1.596 No 29

Low-end Server 1.386 Yes 0.2

Machine
Learning

Crowdsourcing

Edge
Computing

Improvements in
hardware and
software

Convolutional
Neural Networks

Ubiquity of
mobile users

Heterogeneous Devices

https://springml.com/blog/using-object-detection-potholes/
https://www.smartcitiesworld.net/news/news/ai-equals-a-greener-life-for-trondheim-2407

8/20/20 4
4

Introduction
• Cameras are now able to capture videos at a frame rate of 24-60

FPS

• A CNN can process such visual data volume at this rate with
powerful GPU/CPU

Ø Centralized Server cannot scale as number of devices increases

8/20/20 5
5

Example
• Consider a smart city application for Los Angeles Sanitation (LASAN)

Department

• LASAN installs 4-8 cameras at different angles on a sanitary trucks to
monitor and prioritize the street cleaning

• LASAN operates more than 750 trucks

Ø The network and server will be overwhelmed

8/20/20 6
6

Problem definition
• Edge devices cannot feed the entire video frames to the

Convolutional Neural Network
– Lots of computing power
– Lots of redundancy
– Run one inference per few milliseconds to few minutes

• Goal: Select subset of video frames to feed to
classification/object detection models

Ø Need a method to select “meaningful” keyframes

8/20/20 7
7

Spatial Keyframe Extraction Algorithm
• Properties

– Leverages the geospatial metadata of video
frames
• Becomes a coverage problem

– Considers the residual overlap weight of
selected frames

– Supports processing capacity of
heterogeneous devices

Ø But how to select frames without ”seeing”
the frames?

8/20/20 8
8

Definitions – FOV & CMBR
• Sensor-equipped cameras can enrich the

captured video:
– with GPS location (up to per second)
– with Camera viewing direction (per few

microsecond)

• Field-Of-View: A video 𝑣 is represented as a set of individual video frames (or FOVs) 𝐹 =
𝑓!, 𝑓", … , 𝑓#, … , 𝑓$, 𝒇𝒊 =< 𝒑, 𝜽, 𝐑, 𝜶 > ordered by the time 𝑡# at which the frame was

captured.
• Coverage Minimum Bounding Rectangle: Given a set of FOVs 𝐹, the CMBR is the

minimum bounding box which contains all FOVs.

8/20/20 9
9

Definitions – Grid & Cells
• Coverage Grid: Given a CMBR and cell size w, we partition the

CMBR into a set of square cells 𝐺 = 𝑐!, 𝑐", … , 𝑐& of width w
forming the Coverage Grid.

• Cell Set: Given a set of FOVs 𝐹 and the grid 𝐺, the Coverage
Cell Set 𝐶 ⊆ 𝐺 contains all the cells which are covered by at
least one FOV.

• Cell Spatial Weight: The between the camera location of FOV
𝑓# and the cell center 𝑐'

𝑤#,' = 41 −
𝑑 𝑓#. 𝑝, 𝑐'. 𝑝

𝑓#. 𝑅
, 𝑖𝑓 𝑑 𝑓#. 𝑝, 𝑐'. 𝑝 ≤ 𝑓#. 𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8/20/20 10
10

Definitions – Overlap function & residual weight
• Cell Overlap Weight Function: A function 𝑓: 𝑋 → 𝑌 which defines what is the new spatial

weight of the cell when multiple FOVs cover it and are selected by the solution.

– 𝑋 = 𝑥 ∈ ℝ !!
"
|𝑥 = 𝑤",$, 𝑓" ∈ 𝐹$%, 𝑐$ ∈ 𝐶"

– 𝑌 = 𝑦 ∈ ℝ| 0 ≤ 𝑦 ≤ 1

• Residual Overlap Weight: For a current frame selection 𝑆, the residual overlap weight for
𝑓# and its cells 𝐶# is computed as follows:

– for cells 𝑐$ ∈ 𝐶" not covered by any other FOV already in 𝑆, the residual weight 𝑤",$& is equal to 𝑤",$
– Otherwise, use 𝑓 to calculate 𝑤",$

' assuming 𝑓! was added in 𝑆, 𝑤",$& = 𝑤",$
' − 𝑤",$

Ø A new FOV increases the total weight by only the weight difference
Ø Now we can define as a coverage problem

8/20/20 11
11

Maximum Weighted Overlap Coverage Problem
• Given a set of FOVs 𝐹 = 𝑓!, 𝑓", … , 𝑓# , … , 𝑓$, the weights 𝑤#,& , the cell

overlap weight function 𝑓, the set of covered cells 𝐶# = 𝑐!, 𝑐", … , 𝑐'
for each FOV, the maximum budget for frames 𝐵, the Maximum Weighted
Overlap Coverage Problem (MWOCP) finds a subset 𝐹# s.t. 𝐹(≤
𝐵 which maximizes the weighted sum of covered cells in the sets 𝐹&(.

• MWOCP is NP-Hard
– Reduction from Maximum Coverage Problem (MCP)

Ø Greedy-SKE solution is proposed

8/20/20 12
12

Greedy-SKE Time Complexity
• n = |F| FOVs
• m = |C| covered grid cells
• B budget
• Find uncovered cells O(m’), m’ << m
• Find covered cells O(m’’), m’’ << m
• Compute residual O(m’’)
• Runs in 𝑂 𝐵 # 𝑛 # max m’,m’’ ≤ 𝑂(𝑛! # 𝑚)

8/20/20 13
13

Baselines - Greedy-Naive
• Uses a max-heap to get cells in order based on their cumulative spatial

weight of all FOVs. For the current cell 𝑐", a random FOV 𝑓# ∈ 𝐹" is selected
and added to the solution S.

• Additionally, all cells 𝑐$ ∈ 𝐶# are removed from the heap. The algorithm
stops when budget 𝐵 is reached or the heap is emptied.

8/20/20 14
14

Baselines - Clustering
• A set of frames are sampled every half-second.
• Generate histogram of 50 bins is constructed from the HSV color space [1]

(20-20-10 bins for each component, respectively)
• Use histogram as feature vector
• Use k-means with k=B, the budget value
• Extract the closest frame from each cluster centroid

[1] Sandra Eliza Fontes de Avila, Ana Paula Brand ̃ao Lopes, Anto-nio da Luz, and Arnaldo de Albuquerque Ara ́ujo, “Vsumm: A mechanism designed to produce static video summaries
and a novel evaluation method, ”Pattern Recognition Letters, vol. 32,no. 1, pp. 56 – 68, 2011, Image Processing, Computer Vision and Pattern Recognition in Latin America.

HSV
Histogram Features

Frame 1
Frame 2
…
Frame n

Frame 1
Frame 15
…
Frame n

Sample
Frames

Frame 1
Frame 2
…
Frame B

Extract

8/20/20 15
15

Baselines - Temporal
• Selects frames based on a predefined sampling rate 𝑡%

– e.g., 2 frames per second

• 𝑡% can be adjusted in a way, such that it matches the processing capacity of
an edge device

8/20/20 16
16

Baselines - Trajectory-SKE
• Selects frames based on the camera location of the FOV metadata.
• Sort frames by capture time
• A user-defined radius threshold 𝑡& is used to determine whether the

camera location of the frame is farther than the previous frame's radius
• Sampling the trajectory by adjusting 𝑡& ensures that the selected frames

are captured at different locations

8/20/20 17
17

Experimental Setup
• Collected 25 FHD videos at 30FPS along with their FOV metadata

– generating 69K frames (2872 frames per video on average)

• All videos were recorded so that they intentionally contain some frames
that capture a Starbucks coffee shop
– Q: how efficiently detect Starbucks logos from the collected videos?

• Used Google Vision API to detect the Starbucks logo for each frame in
every video and log the detected frames with a confidence≥70%
– resulting to 5.5K frames (~8% of total frames)

• Experiments on Ubuntu Desktop and Raspberry Pi 3 Model B

8/20/20 18
18

Logo Visibility Example in Starbucks experiment

8/20/20 19
19

Experimental Results - Performance

• Clustering approach suffers the most
– 2x slower

• Greedy-SKE needs 1sec on RPI, 100ms on desktop for 50 frames

Desktop Raspberry Pi

8/20/20 20
20

Experimental Results – Spatial Weight Impact

• K < B observation
• Greedy-SKE outperforms others

• Greedy-SKE detect the logo in:
• 66% of videos w/ 6 frames in 17ms
• 75% of videos w/ 10 frames in 26ms
• 80% of videos w/ 15 frames in 39ms

8/20/20 21
21

Conclusion
• Use spatial metadata to speedup frame selection

• Introduce Maximum Weighted Overlap Coverage Problem
– Greedy solution is fast even on resource-constraint devices

• Experimental results on real video dataset show effectiveness of approach

8/20/20 23
23

THANK YOU!

