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Introduction

• What is Action Recognition?
 Action Classification & Bounding Box Regression

• Action recognition is localizing the location of a person and recognizing the 
behavior of target person.

• Each target person can have a multi-label actions.

• Ex, Atomic Visual Actions (AVA) [1], etc.

(A) GT: Sit, Answer Phone (B) GT: Bend/Bow (at the waist), Carry/Hold (an object)

[1] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru,Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco,Rahul Sukthankar, et al. Ava: A video dataset
of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6047–6056, 2018.

Fig. 1.1, The example of Atomic Visual Actions (AVA) dataset.
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Related Work

• Conventional Action Recognition
 To localizing human information, action recognition follows Faster-RCNN 

[1] algorithm. However, the RoIPool module performs RoIPooling across 
the entire temporal axis.

Fig. 2.2, The overall architecture of conventional action recognition network.
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[1] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015).
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Related Work

• Self-Attention Mechanism [1, 2]
 Self-Attention Mechanism was mainly used in the language model and 

was used to consider long-rage interaction. 

 However, it is used by extending it from language model to image data. In 
the image, Self-Attention Mechanism represents the effect of 𝑖𝑡ℎ pixel on 
𝑗𝑡ℎ pixel in spatial axis.

Fig. 2.1, The overall architecture of Self-Attention GAN [2] network.

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017).
[2] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning. pp. 7354–
7363(2019).
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Method

• Motivation
 We need to capture a long-range interactions in the spatial axis and 

temporal axis.

• When judging a person's behavior, important information is extracted from 
the features of hands, other objects, and other humans.

(A) Fight / hit (a person) (B) Smoke

Fig. 3.1, The example of the ground truth bounding box of the “Fight/Hit (a person)” and “Smoke” classes.
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Method

• Spatio-Temporal SlowFast Self-Attention Network
 We reconstruct the 3D self-attention module using a 2D self-attention 

mechanism.

 In addition, the self-attention module was applied by dividing it into 
spatial information, temporal information, slow action information, and 
fast action information.

Fig. 3.2, The overall architecture of Spatio-Temporal SlowFast Self-Attention network.
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Method

• Spatio-Temporal SlowFast Self-Attention Network
 Spatio-Temporal Slow Self-Attention Module

• This module extracts spatial and temporal information from slow actions.

• In the Self-Attention module, there are linear projection parts of key, query, 
and value, and in the proposed 3D self-attention module, we project feature 
map using a 3D convolution layer. The slow action can capture using large 
temporal kernel size (7 x 1 x 1).

Fig. 3.3, The details of Spatio-Temporal Slow Self-Attention module.
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Method

• Spatio-Temporal SlowFast Self-Attention Network
 Spatio-Temporal Fast Self-Attention Module

• This module extracts spatial and temporal information from fast actions.

• we project feature map using a 3D convolution layer. The fast action can 
capture using (1 x 1 x 1) temporal kernel size 3D convolution layer.

Fig. 3.4, The details of Spatio-Temporal Fast Self-Attention module.
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Experiments

• Atomic Visual Actions (AVA) Dataset
 The AVA dataset is more realistic compared to other datasets because the 

dataset crawls Youtube movies and has a multi-label for each person.

 The AVA dataset is divided into Training 211K and 57K validation. Also, 
using the RTX Titan 8 gpus takes 3-5 days of training time.

 Training is conducted on 80 classes, and evaluation is performed on 60 
classes with 25 or more instances.

 The evaluation metric uses Frame-AP and is Average Precision (AP) in the 
keyframe. Intersection of Union (IoU) threshold of 0.5 was used.

Fig. 4.1, The example of Atomic Visual Actions (AVA) Dataset.
[1] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru,Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco,Rahul Sukthankar, et al. Ava: A video dataset
of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6047–6056, 2018.
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[14] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et
al. Ava: A video dataset of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6047–6056, 2018.
[15] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Murphy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric relation network. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 318–334,2018.
[16] Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao, Larry S Davis, and Jan Kautz. Step: Spatio-temporal progressive learning for video action detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 264–272, 2019.
[17] Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2017) 6299–6308.
[18] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman, “Video action transformer network,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 244–253.

Table 4.1: Comparison of modalities, architecture, input size and Frame mAP with state-of-the-art methods on AVA.
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Experiments

Fig. 4.2: Comparison of Spatio-Temporal SlowFast Self-Attention Network and baseline network on 60 classes.
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Experiments

Table 4.2: Comparison of module influence, pooling methods, number of layers, number of dimensions, and layer 
norm effects. SSFA: Spatial SlowFast Self-Attention, TSFA: Temporal SlowFast Self-Attention, GMP: Global Max 

Pooling, GAP: Global Average Pooling, LN: LayerNorm
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Experiments

• Qualitative Results

Fig. 4.3, The Example of top predictions using Spatio-Temporal SlowFast Self-Attention Network.

GT: Sit, touch (an object)
Pred: Sit, touch (an object), carry/hold 
(an object)

GT: Stand, carry/hold (an object), talk to
Pred: Stand, carry/hold (an object), talk 
to, watch (a person)

GT L: Sit, Talk to
GT R: Sit, Listen to, Watch (a person)
Pred L: Sit
Pred R: Sit, Carry/Hold, Listen to, Watch 
(a person)

GT: bend/bow (at the waist), watch (a 
person)
Pred: bend/bow (at the waist), watch (a 
person)
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Conclusion

• We proposed the Spatio-Temporal SlowFast Self-Attention network which 
can extract important spatial information, temporal information, slow 
action information, and fast action information from video understanding.

• Our network applied only the simple self-attention module and achieved 
23.0 mAP compared the previous state-of-the-art network using less 
resources.

• Compared to the ResNet-I3D, 44 out of 60 evaluation classes represent 
performance improvement.


