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What is the saliency map for this image?
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(High Quality)

@)
D s




How about this image?

Plane Plane
Distortion type: Fast Fading Image type: saliency map
Distortion level: 3
(Low quality)
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What qguestions bring out this paper?

« Do image quality affect the saliency prediction

 Whether and to what extent state-of-the-art methods
are beneficial for saliency prediction of distorted images

* Will the ability of deep learning and tradifional
algorithms be different in predicting saliency, based on
an IQA-aware saliency dataset (SIQ288)




Contributions

* |In this paper, we carry out an evaluation of state-of-the-
art saliency models, including 5 deep learning models
and 5§ traditional models by using an IQA-aware saliency
benchmark, i.e. the SIQ288 database.

» Building on the results of our analyses and cross-
comparisons, we offer guidelines for choosing saliency
models and approaches for IQA applications.




« Consists total of 288 images
o 18 pristine images

|QA-aware o Each pristine image has 3 level of distortion
. (I.e. Low, Medium and High distortion)
saliency

o and 5 different types of distortion (i.e. Fast
benchmark, Fading (FF), Gaussian Blur (GBLUR), JPEG

Compression (JPEG), JPEG2000 Compression
SIQZSS (JP2K), and White Noise (WN).

» Saliency maps were obtained via eye-fracking
of 160 human observers under totally lab-
controlled environment.
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SIQ288-examples-3 distortion levels
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Visual Saliency Mode

Saliency Attentive |Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita first tested: 10/30/2016
Model (SAM- Cucchiara. Predicting Human Eye Fixations via an LSTM- (python 0.87 (0.68 |2.15 |0.78 |(0.70 |0.78 (2.34 |[1.27 |last tested: 03/03/2017
ResNet) based Saliency Attentive Model [IEEE TIP 2018]
Saliency Attentive |Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita first tested: 10/30/2016
Model (SAM- Cucchiara. Predicting Human Eye Fixations via an LSTM- |[python 0.87 (0.67 |2.14 |0.78 |(0.71 |0.77 (2.30 |[1.13 |last tested: 03/03/2017
VGG) based Saliency Attentive Model [IEEE TIP 2018]

Taiki Oyama, Takao Yamanaka. Influence of Image first tested: 14/06/2017
DenseSal Classification Accuracy on Saliency Map Estimation [CAAI 0.87 (0.67 |(1.99 |0.81 |(0.72 |0.79 (2.25 |[0.48 |last tested: 14/06/2017

Transactions on Intelligence Technology, 2018]

Taiki Oyama, Takao Yamanaka. Influence of Image first tested: 19/04/2018
DPNSal Classification Accuracy on Saliency Map Estimation [CAAI 0.87 ||0.69 (2.05 |0.80 ||0.74 ||0.82 |2.41 |[0.91 |lasttested: 19/04/2018

Transactions on Intelligence Technology, 2018]

first tested: 24/06/2018

CEDNS Chunhuan Lin, Fei Qi, Guangming Shi, Hao Li 0.87 |0.64 |[2.23 |0.74 (0.69 |[0.75 |[2.43 |0.63 |last tested: 24/06/2018

Alexander Kroner, Mario Senden, Kurt Driessens, Rainer first tested: 06/12/2018
MSI-Net Goebel. Contextual Encoder-Decoder Network for Visual Python 0.87 (0.68 (1.99 |[0.82 (0.72 |[0.79 |(2.27 ||0.66 |last tested: 06/12/2018

Saliency Prediction [arXiv 2019]
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o Attention-based on information maximisation (AIM)
Université = “ ,\:/

Ref: Z. Bylinskii, T. Judd, A. Borii, L. Itti, F. Durand, A. Oliva, and A. Torralba, “Mit saliency benchmark,” http://saliency.mit.edu/. Konstanz i . ) SFB—TRR161



http://saliency.mit.edu/

Torralba - SAM-VGG SalGAN MSI-Net SAM-ResNet

Distorted Image Ground-truth

ﬁ

e
=

CARD'FF . -
ISR Universitat
PRIFYSGOL Konstanz
CARRDYH




Evaluation metrics

3 commonly used saliency metrics from different aspects

* Value-based metrics NSS
(Normalised Scanpath Saliency metric)

* Location-based meitrics AUC-Borji
(Area under the curve-AUC Borji)

 Distribution-based metrics CC
(Pearson Linear Correlation Coefficient)

Ref: Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What Do Different Evaluation Metrics Tell Us about Saliency Models?2,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 3, pp. 740-757, 2019.

A. Boriji, D. N. Sihite, and L. Itti, "Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp.

55-69, Jan 2013.




Overall results
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« Baseline: indicates the performance of a ‘base’ saliency model that is computed by
stretching a symmetric Gaussian to fit the aspect ratio of a given image, under the
assumption that the centre of the image is most salient.

* Only one fraditional model, GBVS, performing above the baseline, others are dominated by
the deep learning models
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 SAM-ResNet, MSI-Net and SalGAN are consistently ranked higher than other models.

* In order to verify whether the difference in performance between traditional and deep
learning models is stafistically significant, hypothesis testing is performed on the AUC-Borji, NSS,
and CC data. The results show that in all cases, the deep learning models are statistically
significantly better than traditional models.
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Results: Impact of distortion types
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|t clearly indicates that deep learning models consistently outperform
traditional models for all distortion types.

« an independent samples t-test for each comparison, and the results
show that for each of the 15 cases (i.e. 5 types x 3 evaluation metrics)
the difference is statistically significant (p < 0.05).




Results: Impact of distortion types

Table 1: Performance of individual saliency models measured by AUC-Borji, CC and NSS, for different distortion types.

FF GBLUR JP2K JPEG
NSST CCT AUCT | NSST CCT AUCT | NSST CCT AUCT | NSST CCtT AUC

SAM-VGG 1.06 0.67 0.66 1.09 0.67 0.66 1.12 0.68 0.66 1.06 0.68 0.65
SAM-ResNet | 1.15 0.79 0.72 1.18  0.78 0.72 1.21 0.80 0.73 1.15 0.79 0.72

ML-Net 0.93 0.59 0.67 0.97 0.60 0.67 0.99 0.6l 0.67 0.97 0.62 0.68
SalGAN 1.08 0.74 0.73 1.11 0.74 0.73 1.16  0.75 0.72 1.12  0.76 0.72
MSI-Net 1.13 0.77 0.73 1.17 0.78 0.73 1.21 0.81 0.73 1.14  0.79 0.72
Torralba 049 032 0.62 0.45 0.29 0.62 0.55 035 0.64 0.52 033 0.63
ITTI 0.75 0.55 0.71 0.77 0.56 0.71 0.75 055 0.70 0.72 054 0.69
GBVS 0.86  0.65 0.73 0.87 0.65 0.73 0.85 0.64 0.72 0.84 0.64 0.72
CovSal 0.63 0.43 0.66 0.58 0.42 0.66 0.71 0.47 0.67 0.71 0.47 0.67

AIM 0.58 0.46 0.70 0.59 0.46 0.70 0.60 046 0.70 0.59 0.47 0.70

* From the results that for the deep learning models, their performance
on the WN distortion is relatively lower than other distortion types.
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AUC-Borji

Results: Impact of distortion level
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All table shows the average performance of traditional vs deep learning
models for different levels of distortion.

The results of hypothesis testing show that for each of the ? cases (i.e. 3
levels x 3 evaluation metrics) the performance of the deep learning

models is statistically significantly better than the fraditional models.
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Results: Impact of distortion levels

Table 2: Performance of individual saliency models mea-
sured by AUC-Borji, CC and NSS, for different distortion
levels. (1.e., Low, Medium and High distortion)

AUC-Borji CC NSS

Low?T MediumT High? | LowT Medium? HightT | LowT MediumT Hight
SAM-VGG 0.66 0.65 0.64 0.67 0.68 0.63 1.08 1.07 0.98
SAM-ResNet | 0.72 0.72 0.72 0.79 0.80 0.75 1.17 1.16 1.09
ML-Net 0.67 0.66 0.66 0.62 0.61 0.50 1.00 0.97 0.78
SalGAN 0.72 0.72 0.72 0.75 0.77 0.72 1.13 1.13 1.06
MSI-Net 0.72 0.72 0.72 0.79 0.80 0.74 1.17 1.16 1.06
Torralba 0.63 0.63 0.62 0.33 0.33 0.29 0.53 0.49 0.45
ITTI 0.69 0.69 0.70 0.52 0.54 0.55 0.71 0.72 0.74
GBVS 0.71 0.72 0.73 0.62 0.65 0.67 0.82 0.83 0.88
CovSal 0.67 0.66 0.65 0.45 0.44 0.41 0.69 0.64 0.58
AIM 0.70 0.69 0.69 0.46 0.47 0.44 0.59 0.58 0.57

 Deep learning models
are promising, but
they show relatively
low performance in
handling highly
distorted images
compared o images
of low and medium
levels of distorfion.
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Conclusion

In this paper, we conducted statistical analyses to evaluate the
performance of deep learning versus fraditional models for saliency
prediction of distorted images. Obviously, deep learning models
significantly outperform traditional models.

In addition, we found that model performance tends to depend on the
type and level of image distortion. Future work could focus on improving
deep learning models for challenging cases, €.g. white noise distorfion or
highly distorted images.




Reflection on learning

1. Why deep learning model has a better prediction performance? and
even it is better but not good enough.

2. Some fraditional models still have a comparable predicting
performance. Why? Will traditional models’ aspects could lead a better

learning ?

3. Can we build a network to predicting images with different image
quality? and how can we generalise a network in predicting images will all

kinds of qualities?
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