Joint Image Super-Resolution via Recurrent Convolutional Neural Networks with Coupled Sparse Priors

Iman Marivani, Evaggelia Tsiligianni, Bruno Cornelis and Nikos Deligiannis

Vrije Universiteit Brussel, Brussels, Belgium - imec, Leuven, Belgium

Presenter: Iman Marivani

Session: TEC-05 -- Machine Learning for Image and Video Processing III

Image Super-resolution

Single image super-resolution:

Reconstruction of a HR image X given its LR version Y

Multimodal image super-resolution:

Reconstruction of a HR image X given its LR image Y guided by a HR image Z from another modality

Different signal modalities:

- RGB
- Depth
- NIR
- Thermal
- Multi- / Hyper-spectral Imaging
- Medical Imaging

Single image super-resolution with convolutional sparse priors

Assumption: LR image y and HR image x share the same sparse representation

LR image:
$$\boldsymbol{y} = \sum_{i=1}^{\kappa} d_i^y * \boldsymbol{\alpha}_i^y$$

HR image: $\boldsymbol{x} = \sum_{i=1}^{k} d_i^x * \boldsymbol{\alpha}_i^x$
Shared sparse features from: $\min_{\boldsymbol{\alpha}} \frac{1}{2} \| \boldsymbol{y} - \sum_{i=1}^{k} \boldsymbol{d}_i * \boldsymbol{\alpha}_i \|_2^2 + \lambda \sum_{i=1}^{k} \| \boldsymbol{\alpha}_i \|_1$,

Approximate convolutional sparse coding (ACSC):

 $\boldsymbol{\alpha}^{t+1} = \phi_{\gamma}(\boldsymbol{S} \ast \boldsymbol{\alpha}^{t} + \boldsymbol{W} \ast \boldsymbol{y}) \qquad \qquad \text{Shrinkage function:} \quad \phi_{\gamma}(u_{i}) = \operatorname{sign}(u_{i}) \max\{|u_{i}| - \gamma, 0\}$

Multimodal image SR via convolutional sparse coding with side information

LR image (modality 1):
$$\boldsymbol{y} = \sum_{i=1}^{k} d_{i}^{y} * \boldsymbol{\alpha}_{i}^{y}$$

HR image (modality 1): $\boldsymbol{x} = \sum_{i=1}^{k} d_{i}^{x} * \boldsymbol{\alpha}_{i}^{x}$ $\min_{\boldsymbol{\alpha}} \frac{1}{2} \| \boldsymbol{y} - \sum_{i=1}^{k} d_{i} * \boldsymbol{\alpha}_{i} \|_{2}^{2} + \lambda (\sum_{i=1}^{k} \| \boldsymbol{\alpha}_{i} \|_{1} + \sum_{i=1}^{k} \| \boldsymbol{\alpha}_{i} - \boldsymbol{\alpha}_{i}^{z} \|_{1})$
HR side info (modality 2): $\boldsymbol{z} = \sum_{i=1}^{k} d_{i}^{z} * \boldsymbol{\alpha}_{i}^{z}$

Learned multimodal convolutional sparse coding (LMCSC) for solving the problem above:

$$oldsymbol{lpha}^{t+1} = \xi_{\mu}(oldsymbol{lpha}^t - oldsymbol{Q} * oldsymbol{R} * oldsymbol{lpha}^t + oldsymbol{P} * oldsymbol{y}; oldsymbol{lpha}^z)$$

Shrinkage function (LeSITA operator):

$$\begin{aligned}
&\text{for } s_i \ge 0, i = 1, \dots, m: \\
&\text{for } s_i \ge 0, i = 1, \dots, m: \\
&\text{for } s_i \ge 0, i = 1, \dots, m: \\
&\text{for } s_i \ge 0, i = 1, \dots, m: \\
&\text{for } s_i \ge 0, i = 1, \dots, m: \\
&\text{for } s_i < 0, i = 1, \dots, m: \\
&\text{for } s_i < -2\mu \\
&\text{for } s_i < -2\mu$$

Existing methods for multimodal image SR

Analytical methods:

$$x = D_x \alpha$$
, s.t. $\alpha = \arg\min_{v \in \mathbb{R}^{n_\alpha}} \|y - D_y v\|_2^2 + \lambda \|v\|_1$,

[J. Yang, J. Wright, T. Huang, Y. Ma 2010]

Deep learning methods:

Deep Unfolding methods:

[Z. Wang, D. Liu, J. Yang, W. Han, T. Huang 2015]

Our goal is designing a deep network that:

- + Taking the structure of the signal into account
- These methods are explainable
- Computationally expensive at training and inference
- Not practical in case of very large datasets
- State-of-the-art performance
- Fast inference
- Structure of the signal is not considered
- The intermediate steps are not interpretable
- The fusion is performed blindly by a concatenation or linear combination
- Interpretable structure
- Neural network architecture, fast inference
- Does not consider advances in deep learning

Considers the structure of the signal and the prior knowledge Follows the advances in deep learning Fuses the signal representations using a principled method

Main components for the network design

ACSC for the convolutional sparse feature map extractor

LeSITA for the fusion of the modalities

A dual state RNN to obtain the HR representations

A convolutional dictionary to reconstruct the HR image

Network design

Experimental results

Super-resolution of Multi-spectral images with the help of an RGB image.

Image	SRFBN [20]			DJF [14]				CoISTA [15]			LMCSC [19]			Proposed						
mage	×4		×8		×4		×8		×4		$\times 8$		×4		$\times 8$		×4		$\times 8$	
Chart toy	33.43	0.9838	27.90	0.8736	37.86	0.9935	32.89	0.9733	36.58	0.9914	33.18	0.9768	40.31	0.9965	34.35	0.9805	40.96	0.9978	34.89	0.9833
Egyptian	40.04	0.9822	35.50	0.9755	45.69	0.9922	41.58	0.9850	45.91	0.9961	43.46	0.9906	48.79	0.9981	43.90	0.9966	49.55	0.9991	44.60	0.9967
Feathers	35.53	0.9873	30.14	0.9718	40.13	0.9939	31.50	0.9396	39.62	0.9937	32.04	0.9432	41.48	0.9962	36.81	0.9875	42.05	0.9975	37.65	0.9904
Glass tiles	29.53	0.9676	23.72	0.9002	34.97	0.9915	29.53	0.9685	33.99	0.9907	27.96	0.9390	34.65	0.9939	30.20	0.9724	36.11	0.9959	30.85	0.9818
Jelly beans	32.97	0.9845	25.80	0.9243	39.16	0.9885	30.14	0.9503	38.92	0.9956	30.69	0.9585	39.75	0.9966	34.70	0.9888	41.10	0.9983	34.78	0.9898
Oil Paintings	32.68	0.9182	31.07	0.9258	37.76	0.9805	35.12	0.9492	37.26	0.9690	35.99	0.9482	39.14	0.9910	36.27	0.9759	39.01	0.9917	35.73	0.9724
Paints	36.06	0.9907	28.03	0.9653	39.36	0.9944	31.86	0.9553	38.40	0.9949	33.05	0.9679	38.98	0.9966	35.06	0.9910	40.61	0.9981	35.49	0.9937
Average	34.32	0.9735	28.88	0.9338	39.28	0.9906	33.23	0.9602	38.67	0.9902	33.77	0.9615	40.44	0.9955	35.90	0.9847	41.34	0.9969	36.28	0.9869

Super-resolution of NIR images with the help of an RGB image.

Image	SRFB	N [20]	DJF	[14]	CoIST	A [15]	LMCS	C [19]	Proposed		
	×2	$\times 4$	×2	$\times 4$	$\times 2$	$\times 4$	$\times 2$	$\times 4$	$\times 2$	$\times 4$	

 u-0004
 35.36
 0.9974
 29.01
 0.9787
 34.50
 0.9964
 31.02
 0.9784
 35.83
 0.9968
 31.56
 0.9835
 37.36
 0.9977
 33.75
 0.9869
 38.13
 0.9986
 34.28
 0.9911

 u-0006
 41.08
 0.9970
 33.73
 0.9702
 41.52
 0.9975
 36.04
 0.9894
 42.40
 0.9976
 37.21
 0.9871
 43.60
 0.9982
 38.74
 0.9912
 43.98
 0.9988
 39.83
 0.9943

 u-0017
 38.19
 0.9950
 32.91
 0.9725
 38.65
 0.9961
 34.18
 0.9815
 39.13
 0.9953
 34.87
 0.9777
 40.87
 0.9967
 36.16
 0.9828
 41.49
 0.9978
 36.92
 0.9874

 u-0017
 38.19
 0.9950
 31.44
 0.9970
 31.78
 0.9960
 30.72
 0.9888
 37.54
 0.9977
 32.25
 0.9867
 39.21
 0.9982
 34.17
 0.9902
 41.82
 0.9991
 36.60
 0.9943

 u-0020
 37.50
 0.9969
 31.44
 0.9807
 37.35
 0.

Experimental results

Super-resolve a NIR image with the help of an RGB image and the error maps.

Conclusion

Key properties of the proposed network:

- Convolutional sparse maps as intermediate features
- Does not rely on bicubic interpolation for LR image initialization
- Exploits the advances in deep learning
- Leverages the benefits of deep unfolding designs
- Employs coupled sparse priors for signal fusion
- Reconstructs the entire image at once rather than extracted patches

Thank you for your time!