A Comparative Evaluation of Temporal Pooling Methods for Blind Video Quality Assessment

Zhengzhong Tu^{1*}, Chia-Ju Chen^{1*}, Li-Heng Chen¹, Neil Birkbeck², Balu Adsumilli², and Alan C. Bovik¹

¹The University of Texas at Austin, ²YouTube Media Algorithms Team, Google Inc.

Presenter: Chia-Ju (Christie) Chen

Check out our paper @SMR-05.8

Agenda

- Background
- Temporal Pooling Methods
 - Traditional means
 - Means emphasizing low-quality parts
 - Means emphasizing memory effects
- Ensemble Temporal Pooling
- Experimental Results
- Observations and Recipe

Background

• Blind Video Quality Assessment (BVQA):

Blind predicting perceptual quality of a video clip

- Video-level features + Regression
- Blind frame quality assessment (BIQA)
 + temporal quality pooling
- BIQA + Temporal Pooling
 - Simple but effective
 - Evidence from subjective experiments [1]
 - Easily extensible to build future BVQA based on future BIQA models

[1] S., Kalpana, and A. C. Bovik. "Temporal hysteresis model of time varying subjective video quality." *ICASSP*, 2011.

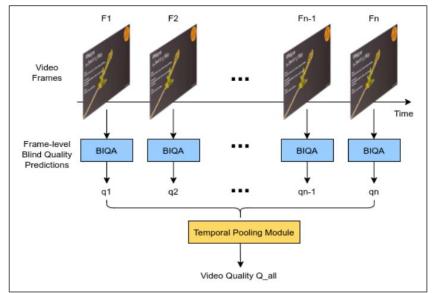


Fig 1. Building BVQA models by temporal pooling of BIQA-predicted scores

Temporal Pooling Methods

Traditional Means

- Arithmetic Mean: Ο
- Harmonic Mean: 0

$$Q = \frac{1}{N} \sum_{n=1}^{N} q_n$$
$$Q = \left(\frac{1}{N} \sum_{n=1}^{N} q_n^{-1}\right)^{-1}$$

Geometric Mean: 0

$$Q = \left(\prod_{n=1}^{N} q_n\right)^{1/N}$$

Lp Minkowski Mean: Ο

$$Q = \left(\prod_{n=1}^{N} q_n\right)$$
$$Q = \left(\frac{1}{N} \sum_{n=1}^{N} q_n^p\right)^{1/p}$$

Temporal Pooling Methods

Means emphasizing low-quality parts

• Percentile:
$$Q = \frac{1}{|P_{\downarrow k\%}|} \sum_{n \in P_{\downarrow k\%}} q_n$$
 where $P_{\downarrow k\%}$ denotes the set of lowest $k\%$ scores

• VQPooling [2]:
$$Q = \frac{\sum_{n \in G_L} q_n + w \cdot \sum_{n \in G_H} q_n}{|G_L| + w \cdot |G_H|}$$
 Where G_L and G_H are low quality and high quality groups separated by k-means where $w = \left(1 - \frac{M_L}{M_H}\right)^2$

• Temporal Variation
$$Q = \frac{1}{|P_{\uparrow k\%}|} \sum_{n \in P_{\uparrow k\%}} |q_n - q_{n-1}|$$

where

 $P_{\uparrow k\%}$ is the set of largest k% absolute quality differences

[2] Park, J., Seshadrinathan, K., Lee, S., & Bovik, A. C. (2012). Video quality pooling adaptive to perceptual distortion severity. *TIP*.

Temporal Pooling Methods

- Memory effects:
 - Primacy and recency effects:

$$Q = \sum_{n=1}^{N} w_n q_n$$

Primacy:

$$w_n = \frac{\exp\left(-\alpha_p n\right)}{\sum_{k=0}^{L} \exp\left(-\alpha_p k\right)}, \ 0 \le n \le L$$

Recency:

$$w_n = \frac{\exp\left(-\alpha_r(L-n)\right)}{\sum_{k=0}^{L} \exp\left(-\alpha_r(L-k)\right)}, \ 0 \le n \le L$$

• Hysteresis pooling [3]

 $l_n = \begin{cases} q_n, & n = 1\\ \min_{k \in \mathcal{K}_{norm}} \{q_k\}, & n > 1 \end{cases}$ $\boldsymbol{v} = sort(\{q_k\}), \ k \in \mathcal{K}_{next}$ $m_n = \sum_{j=1}^J v_j w_j, \ J = |\mathcal{K}_{next}|$ $q_n' = \alpha m_n + (1 - \alpha) l_n$ $Q = \frac{1}{N} \sum_{n=1}^{N} q'_n$

[3] Seshadrinathan, K., & Bovik, A. C. Temporal hysteresis model of time varying subjective video quality. ICASSP, 2011.

Ensemble Temporal Pooling

• We propose an ensemble-based pooling:

 $Q_{\text{EPooling}} = \mathcal{F}(\boldsymbol{Q}), \ \boldsymbol{Q} = \{Q_i\}, \ i = 1, 2, ..., I$

where, Q is singly pooled score, and F() is a learned regression mapping.

- We empirically selected three pooling methods to ensemble:
 - Mean, VQPooling, Hysteresis
- Why ensemble?
 - More robust
 - Better performance on average

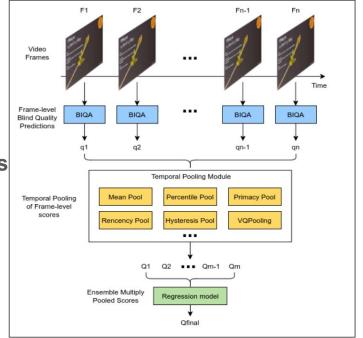


Fig 2. Ensenble multiply temporal pooling methods

Experiments

- Selected 5 popular BIQA models: - NIQE, BRISQUE, GM-LOG, HIGRADE, CORNIA
- UGC video quality benchmarks: - KoNViD-1k, LIVE-VQC
- Parameters:
 - p = 2 for Minkowski
 - k = 10% for percentile
 - $(L, \alpha_p, \alpha_r) = (180, 0.01, 0.01)$ for memory effects
 - (au, lpha) = (60, 0.8) for temporal hysteresis

• Evaluation protocols:

- 100 iterations of 80%-20% train-test splits, report median SRCC/PLCC

Experimental Results

Table 1: Performance comparison of temporal pooling methods as evaluated on KoNViD-1k [34] and LIVE-VQC [35]. Each cell shows the median evaluation results formatted as SRCC/PLCC. The three best results along each column are **boldfaced**.

Database	KoNViD-1k					LIVE-VQC				
Pool/Model	NIQE	BRISQUE	GMLOG	HIGRADE	CORNIA	NIQE	BRISQUE	GMLOG	HIGRADE	CORNIA
Mean	0.552/0.560	0.673/0.676	0.662/0.671	0.690/0.696	0.749/0.764	0.600/0.631	0.597/0.632	0.575/0.618	0.532/0.570	0.694/0.743
Median	0.543/0.554	0.667/0.670	0.657/0.666	0.680/0.689	0.750/0.760	0.584/0.618	0.577/0.619	0.558/0.602	0.521/0.559	0.687/0.744
Harmonic	0.550/0.560	0.674/0.676	0.667/0.674	0.693/0.699	0.696/0.696	0.607/0.637	0.605/0.636	0.585/0.620	0.537/0.575	0.709/0.737
Geometric	0.551/0.560	0.676/0.679	0.666/0.673	0.692/0.698	0.747/0.760	0.604/0.634	0.600/0.631	0.578/0.617	0.537/0.573	0.698/0.746
Minkowski	0.552/0.559	0.672/0.676	0.661/0.670	0.689/0.695	0.736/0.746	0.597/0.628	0.596/0.630	0.574/0.615	0.538/0.569	0.688/0.739
Percentile	0.545/0.547	0.655/0.647	0.674/0.678	0.685/0.687	0.696/0.700	0.630/0.634	0.629/0.647	0.606/0.627	0.586/0.610	0.712/0.744
VQPooling	0.549/0.554	0.670/0.665	0.672/0.674	0.698/0.701	0.743/0.758	0.628/0.644	0.617/0.658	0.605/0.633	0.563/0.597	0.700/0.753
Variation	0.347/0.328	0.348/0.338	0.509/0.511	0.434/0.444	0.240/0.303	0.507/0.476	0.470/0.463	0.495/0.488	0.474/0.482	0.567/0.609
Primacy	0.541/0.552	0.668/0.671	0.647/0.653	0.684/0.690	0.726/0.741	0.601/0.631	0.573/0.627	0.575/0.613	0.535/0.561	0.684/0.737
Recency	0.553/0.558	0.670/0.667	0.660/0.667	0.690/0.694	0.745/0.754	0.584/0.615	0.586/0.626	0.561/0.599	0.518/0.555	0.670/0.729
Hysteresis	0.563/0.569	0.684/0.681	0.681/0.684	0.703/0.707	0.732/0.735	0.621/0.638	0.621/0.650	0.600/0.629	0.570/0.595	0.711/0.756
EPooling	0.572/0.579	0.670/0.679	0.670/0.676	0.698/0.704	0.749/0.762	0.623/0.645	0.617 /0.646	0.605/0.623	0.582/0.601	0.705/0.743

Observations and Recipe

- Efficacy of temporal pooling is content-dependent:
 - If videos contain **more motion** or **temporal quality variation**, we recommend low-quality emphasizing pooling strategies like **Perceptile**, **VQPooling**, or **Hysteresis**.
 - If videos have less (camera) motion, like UGC videos uploaded to Flickr or YouTube, traditional sample mean may be adequate.
- Our proposed Ensemble pooling is an effective way to compensate between different pooling methods, thus delivering a more robust result.

@ICIP'2020

Thanks for listening!

