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 Hand-crafted feature based correlation filters

 Deep Learning Feature

 Object tracking methods

Introduction

 KCF: KCF is a kernelized version of correlation filter in which kernel trick is 

applied to achieve non-linear classification boundaries.

 CSR-DCF: By introducing the channel and spatial reliability , DCF tracking is 

efficient and seamless integration in the filter update and the tracking process. 

 Dsiam: DSiam is equipped with a fast general transformation learning model to 

consider the temporal variations of both foreground and background during online 

tracking.

 VITAL: On the basis of MDNet, GAN network is used to expand positive and 

negative samples.
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 Tracking in color videos has intrinsic limitation in

describing the physical properties of target,

making the tracker vulnerable in complex

scenarios with cluttered background and

significant object shape change.

Introduction

(e.g. similar appearance and texture.)

 As shown in the picture on the right, can the

tracking effect be guaranteed when the color

background and texture are very similar ?

 Problem Statement
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 Hyperspectral images (HSIs) record continuous spectral reflectance of targets in light wavelength 

indexed band images.

 The spectral information enables material identification which dramatically increases the discriminative 

capability of HSIs and benefits object tracking.

embedded devices

Introduction

 What is hyperspectral image?



The spectral curves of trees and people are very different.

Introduction

 Material-based object tracking example



7

 Hand-crafted features

 Qian et al. extracted a set of patches in every band as convolutional kernels but ignored spectral

correlation in the image.

 Xiong et al. proposed a material based hyperspectral tracker which employs a histogram of multi-

dimensional oriented gradients and abundances.

 Hand-crafted features can not sufficiently describe the inherent nature of the data.

 Deep features

 Due to limited HSI training data, Uzkent et al. proposed a deep kernelized correlation filter method

in which HSIs are converted into a false-color image and then passed through VGGNet.

 The converted false-color image loses valuable spectral information, compromising the tracking

performance.

Motivations

Hyperspectral datasets are scarce but there are many RGB data sets. How to make better use 

of the models trained on RGB datasets?

 Overview of HSI object tracking algorithm
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 A naive option is to group adjacent bands sequentially based on their indices. But 

adjacent bands are normally highly correlated, producing redundant bands in a group.

Motivations

 Band grouping can be done according to the importance of each band. 

 Ranking based band selection selects a number of top-ranked bands in order of their importance.

 Driven by the success of deep learning and nonlinear features learning.

 Deep attention mechanism is also adopted and trained in an end-to-end manner to model the 

nonlinear relationship between spectral bands.

 Re-arranging the band images into three-channel groups  is a key issue. 
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Motivations

Deep neural network transforms hyperspectral imagesDeep neural network transforms hyperspectral images
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 Autoencoder-like architecture is employed to learn the nonlinear relationship 

among bands and generate their significance while reducing the influence of 

noises.

 Achieve a balance between accuracy and efficiency

Motivations

A: Ensemble Learning! We choose the 

mean ensemble method.

Q: How can the multiple sets of results 

produced after HSI conversion be 

integrated into the final result?

n ny x w 2 1( ( ( ( ))poolw softmax f   T T

n 1 2 2 1x A ) B A ) A

Ideas
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Our Approach

The architecture of BAE-Net. An autoencoder-like architecture is used to produce band ranking. The 

sorted bands are split into a group of three-channel images, which are fed into VITAL to produce weak 

trackers. Ensemble learning combines weak trackers for object localization.

Our architecture 
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Our Approach

VITAL Architecture 
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Our Approach

𝐌 : the actual mask.

• : the dropout. 

ሻ𝐆(𝐅 : the output features after the generator operates the feature 𝐅.

ሻ𝐃(𝐍 : the output features after the discriminator operates the feature 𝐍. 

𝑆1 and 𝑆2 : training sample loss.

L: number of bands.
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Experimental Results 

Evaluation on HSI Datasets (Quantitative)
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Experimental Results 

As shown in Table, almost all trackers provide better AUCs on color videos because hyperspectral or false-

color videos are of lower spatial resolution and contain more noises. The proposed BAE-Net achieves the 

best AUC on hyperspectral videos thanks to the embedded band attention module and ensemble learning.

Evaluation on HSI Datasets (Quantitative)
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Experimental Results 

Evaluation on HSI Datasets (Quantitative)



17

 To focus on deep ensemble learning to increase tracking accuracy.

 To improve network operation efficiency and reduce running 

time.

Conclusion & Future Work 

 Future Work

 Band ranking can suppress the uninformative bands and enhance learning from 

dominative informative bands.

 BAE-Net achieves better results than deep color trackers and hyperspectral 

trackers.

 Conclusions
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