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Introduction

* 3D object detection is fundamental for
autonomous driving

* New datasets (nuScenes, Waymo, Lyft Level5)
from mid-2019 include sequential LiDAR data

* Investigate the efficacy of recurrent neural
networks for processing sequential point
cloud data

nuScenes data allows for testing recurrent architectures



Overview of Proposed Method

* Use PointPillars (PP)!”] as a benchmark non-recurrent object detection
network

* Modify original architecture to use Convolutional Long Short-term
Memory (ConvLSTM) recurrent structure =» call it PP-REC
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[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019.



PointPillar Architecture

* PP’ has three main stages:

* Point cloud feature extraction, via PointNet!!! on pillar-shaped voxels
* Maps point cloud into 2D pseudo-image

e 2D convolutional neural network backbone
» SSD detection head for producing 3D bounding boxes

Point cloud Predictions
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[1] Qi et al., “Pointnet: Deep learning on point sets for 3d classification and segmentation,” CVPR, 2017.
[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019.



Proposed Architecture

 Added ConvLSTM layer, shown in red, takes input from the 2D CNN
* ConvLSTM output is directly used by the Detection Head
e Use recurrent structure to process sequences
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Data Processing: Time Frame

* Original PP[”l models combine LiDAR data A““°Iati°"
from multiple time steps into one Group  t-9 t-5 -2

of Frames (GoF) A HHH+H—
* e.g. 10 LiDAR frames combined into one GoF |JECEGH IECEH JEER2) ~--~=c
* We create multiple smaller LiDAR GoF’'s |G ~P-10

for proposed recurrent model o)
e e.g. 10 LiDAR frames split into three GoF’s
* Allows for build-up of recurrent memory
* Less point cloud data per prediction

LiDAR data split into several Groups of Frames
(PC-0, PC-1, PC-2), or a single Group of Frames
(PC-0)

[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019.



Data Processing: Recurrent Architecture

* ConvLSTM takes 2D featurized point
cloud as input

* Hidden dimension is propagated
through time, then used for detection

* ConvLSTM integrates well with CNN
feature extraction
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Experimental Setup: Voxelization

* Voxelization is controlled by varying the dimensions
of pillars

* Train “coarse” and “fine” levels of voxelization
e Coarse models use base dimension 0.3125m x 0.3125m
* Fine models use base dimension 0.25m x 0.25m

Pillar bases are drawn on
the ground plane




Experimental Setup: Time Frame

* Training data is annotated with bounding boxes
at 2Hz, LiDAR recorded at 20Hz

* Models given variable number of LiDAR frames Annotation
leading up to an annotation !

e PPU"l'is trained with up to 3, 10, and 20 frames {-9 t-5 t-2 t
before annotation

* PP combines all frames into one GoF to produce I | I I I I | I I I

detection results

. . . PP-REC
* PP-REC (ours) is trained with up to 10 and 20 ~ PC-0 PC-1 PC2
frames before annotation _ PP-10
* Split into a sequence of GoF’s with 3-4 frames each

* Sequence is treated as a data stream - PP-3

* PP-REC run on data stream, detection results taken
from most recent GoF

* PP-REC-S uses GoF sequences incremented by one
time step, rather than 3-4

[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019. 10



Experimental Results (1)

Object Detection mAP (%)

Coarse Fine
# of Frames Car Pedestrian Car Pedestrian
PP-20 20 74.81 52.32 75.44 59.44
PP-10 10 69.43 44.27 74.68
PP-3 3 65.79 30.51 71.64
PP-REC, 20 (Ours) 20 70.26 53.01 —
PP-REC, 10 (Ours) 10 67.04 52.46 67.97
PP-REC-S, 7 (Ours) 7 75.79 4941 — —

* PP-REC (ours) compares favorably to PP-3!7!
e Our model has higher car and pedestrian mAP
* Both use 3 LiDAR frames for detection; ours also has recurrent memory
* PP-REC between PP-3 and PP-10 for pedestrian detection in fine case

* PP-10"I and PP-20"! maintain an advantage in fine case

[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019.

11



Experimental Results (2)

Object Detection mAP (%)

Coarse Fine
# of Frames Car Pedestrian Car Pedestrian

PP-20 20 74.81 52.32 75.44 59.44
PP-10 10 69.43 44,27 74.68 60.26
PP-3 3 65.79 30.51 | 71.64 50.82
PP-REC, 20 (Ours) 20 70.26 53.01 — —
PP-REC, 10 (Ours) 10 67.04 52.46 67.97 56.87
PP-REC-S, 7 (Ours) 7 75.79 49.41 — —

* PP-REC-S 7 outperforms PP-10 in coarse case
e Qutperforms PP-20 in coarse car detection, with many fewer LiDAR frames for detection

* Accuracy increases with more data

* More data alleviates issues from reduced resolution
* Our model can build long-term memory to use at runtime without increased overhead
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Experimental Results (3)

Pedestrian

Precision
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e PP-REC (ours) maintains higher positive predictive value as the recall rate increases
compared to PP-3U]
* This explains the reason PP-REC outperforms PP-3 in pedestrian detection mAP

[7] Lang et al., “PointPillars: Fast encoders for object detection from point clouds,” CVPR, 2019.



Conclusion and Future Work

e Recurrent models are a promising avenue for processing newly
available sequential LiDAR data

* Leverage multi-sensor fusion in a recurrent fashion

* RGB-based recurrent networks
e 2D video object detection, monocular depth estimation



Thank youl!
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