3D Object Detection Using Temporal LiDAR Data

Scott McCrae and Avideh Zakhor

Video and Image Processing Lab

Department of Electrical Engineering and Computer Sciences

UC Berkeley

Related Work

- Feature Extraction
 - PointNet^[1], PointNet++^[2]
- Voxelization
 - VoxelNet^[3]
- Bird's Eye View
 - Fast and Furious^[4], YOLO3D^[5]
- Direct on point cloud
 - Frustum ConvNet^[6]

Figure from [3] demonstrates many applications of deep learning on point clouds

- [1] Qi et al., "Pointnet: Deep learning on point sets for 3d classification and segmentation," CVPR, 2017.
- [2] Qi et al., "Pointnet++: Deep hierarchical feature learning on point sets in a metric space," NeurIPS, 2017.
- [3] Zhou et al., "Voxelnet: End-to-end learning for point cloud based 3d object detection," arXiv preprint, 2017.
- [4] Luo et al., "Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net," CVPR, 2018.
- [5] Ali et al., "Yolo3d: End-to-end real-time 3d oriented object bounding box detection from lidar point cloud," arXiv preprint, 2018.
- [6] Wang et al., "Frustum convnet: Slid- ing frustums to aggregate local point-wise features for amodal 3d object detection," arXiv preprint, 2019.

Introduction

- 3D object detection is fundamental for autonomous driving
- New datasets (nuScenes, Waymo, Lyft Level5) from mid-2019 include sequential LiDAR data
- Investigate the efficacy of recurrent neural networks for processing sequential point cloud data

nuScenes data allows for testing recurrent architectures

Overview of Proposed Method

- Use PointPillars (PP)^[7] as a benchmark non-recurrent object detection network
- Modify original architecture to use Convolutional Long Short-term Memory (ConvLSTM) recurrent structure → call it PP-REC

PointPillar Architecture

- PP^[7] has three main stages:
 - Point cloud feature extraction, via PointNet^[1] on pillar-shaped voxels
 - Maps point cloud into 2D pseudo-image
 - 2D convolutional neural network backbone
 - SSD detection head for producing 3D bounding boxes

Proposed Architecture

- Added ConvLSTM layer, shown in red, takes input from the 2D CNN
- ConvLSTM output is directly used by the Detection Head
- Use recurrent structure to process sequences

Data Processing: Time Frame

- Original PP^[7] models combine LiDAR data from multiple time steps into one Group of Frames (GoF)
 - e.g. 10 LiDAR frames combined into one GoF
- We create multiple smaller LiDAR GoF's for proposed recurrent model
 - e.g. 10 LiDAR frames split into three GoF's
 - Allows for build-up of recurrent memory
 - Less point cloud data per prediction

LiDAR data split into several Groups of Frames (PC-0, PC-1, PC-2), or a single Group of Frames (PC-0)

Data Processing: Recurrent Architecture

- ConvLSTM takes 2D featurized point cloud as input
- Hidden dimension is propagated through time, then used for detection
- ConvLSTM integrates well with CNN feature extraction

Experimental Setup: Voxelization

- Voxelization is controlled by varying the dimensions of pillars
- Train "coarse" and "fine" levels of voxelization
 - Coarse models use base dimension 0.3125m x 0.3125m
 - Fine models use base dimension 0.25m x 0.25m

Pillar bases are drawn on the ground plane

Experimental Setup: Time Frame

- Training data is annotated with bounding boxes at 2Hz, LiDAR recorded at 20Hz
- Models given variable number of LiDAR frames leading up to an annotation
- PP^[7] is trained with up to 3, 10, and 20 frames before annotation
 - PP combines all frames into one GoF to produce detection results
- PP-REC (ours) is trained with up to 10 and 20 frames before annotation
 - Split into a sequence of GoF's with 3-4 frames each
 - Sequence is treated as a data stream
 - PP-REC run on data stream, detection results taken from most recent GoF
 - PP-REC-S uses GoF sequences incremented by one time step, rather than 3-4

Experimental Results (1)

Object Detection mAP (%)								
		Coarse		Fine				
	# of Frames	Car	Pedestrian	Car	Pedestrian			
PP-20	20	74.81	52.32	75.44	59.44			
PP-10	10	69.43	44.27	74.68	60.26			
PP-3	3	65.79	30.51	71.64	50.82			
PP-REC, 20 (Ours)	20	70.26	53.01					
PP-REC, 10 (Ours)	10	67.04	52.46	67.97	56.87			
PP-REC-S, 7 (Ours)	7	75.79	49.41	_	_			

- PP-REC (ours) compares favorably to PP-3^[7]
 - Our model has higher car and pedestrian mAP
 - Both use 3 LiDAR frames for detection; ours also has recurrent memory
 - PP-REC between PP-3 and PP-10 for pedestrian detection in fine case
- PP-10^[7] and PP-20^[7] maintain an advantage in fine case

Experimental Results (2)

Object Detection mAP (%)								
		Coarse		Fine				
	# of Frames	Car	Pedestrian	Car	Pedestrian			
PP-20	20	74.81	52.32	75.44	59.44			
PP-10	10	69.43	44.27	74.68	60.26			
PP-3	3	65.79	30.51	71.64	50.82			
PP-REC, 20 (Ours)	20	70.26	53.01	_	_			
PP-REC, 10 (Ours)	10	67.04	52.46	67.97	56.87			
PP-REC-S, 7 (Ours)	7	75.79	49.41	-	-			

- PP-REC-S 7 outperforms PP-10 in coarse case
 - Outperforms PP-20 in coarse car detection, with many fewer LiDAR frames for detection
- Accuracy increases with more data
 - More data alleviates issues from reduced resolution
 - Our model can build long-term memory to use at runtime without increased overhead

Experimental Results (3)

- PP-REC (ours) maintains higher positive predictive value as the recall rate increases compared to PP-3^[7]
 - This explains the reason PP-REC outperforms PP-3 in pedestrian detection mAP

Conclusion and Future Work

- Recurrent models are a promising avenue for processing newly available sequential LiDAR data
- Leverage multi-sensor fusion in a recurrent fashion
- RGB-based recurrent networks
 - 2D video object detection, monocular depth estimation

Thank you!

