

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates

AUTHOR: JIE JIANG, JING LIU, JUN FU, XINXIN ZHU, HANQING LU

REPORTER: JIE JIANG

NATIONAL LABORATORY OF PATTERN RECOGNITION, INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES SCHOOL OF ARTIFICIAL INTELLIGENCE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES

- 1. Background
- 2. Method
- 3. Experiments
- 4. Conclusion

1. Background

- 2. Method
- 3. Experiments
- 4. Conclusion

Background: Semantic segmentation task

Image semantic segmentation aims to assign semantic labels to every pixel in an image

Background: Applications

Instance segmentation

Automatic drive

Human parsing

Saliency Detection

Medical diagnosis

Photograph

Background: Fully convolutional network (FCN)

32X bilinear interpolation

Background: Contextual information

1/8

1/16

1/32

Zhao, Hengshuang, et al. "Pyramid scene parsing network." *Proceedings* of the IEEE conference on computer vision and pattern recognition. 2017.

Lin, Guosheng, et al. "Refinenet: Multi-path refinement networks for high-resolution semantic segmentation." CVPR, 2017.

1/16

1/8

RefineNet

Chen, Liang-Chieh, et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation." ECCV. 2018.

Relation Context: self-attention mechanism captures the long-range dependencies between pixels

Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Huang, Zilong, et al. "Ccnet: Criss-cross attention for semantic segmentation." *Proceedings* of the IEEE International Conference on Computer Vision. 2019.

1. Background

- 2. Method
- 3. Experiments
- 4. Conclusion

Method: the defect of self-mechanism

Method: Point set attention network (PSANet)

$$Q_{l,i,j} = \sum_{m=-s}^{s} \sum_{n=-s}^{s} P_{((m+s)\times k+(n+s)),i,j} \cdot B_{l,i+n,j+m} \quad (1)$$

where $s = \lfloor k/2 \rfloor, \ Q_{l,i,j} \in \mathbf{Q}, \ l \in [1, 2, ..., C'], \ i \in [1, 2, ..., H] \text{ and } j \in [1, 2, ..., W].$

Mask: pixels with the same class as current pixel would response highly

Method: Point set attention network (PSANet)

- 1. Generate mask feature P
- Apply a mask convolution on feature B with mask feature P, obtaining an updated feature Q
- Model the relation between updated feature Q and context feature D with self-attention mechanism
- 4. Adopt M-Loss to regularize the training

- 1. Background
- 2. Method
- 3. Experiments
- 4. Conclusion

Experiments: Ablation experiments

Table 1. Ablation experiments of point set attention on Cityscapes validation set. Os denotes the output feature size compared with input image. Point set(w/o mask) denotes the mask feature in PSAM is set to uniform distribution.

Method	os=16(mIoU%)	os=8(mIoU%)
baseline	69.06	70.73
+pixel-wise	72.77	75.10
+point set(w/o mask)	73.78	75.37
+point set	74.18	76.54

Table 2. Ablation experiments of point set size on Cityscapesvalidation set. k denotes the size of the point set.

k	mIoU%	GFLOPs	Memory(MB)
1	72.77	7.10	679.1
3	73.73	8.69	739.3
5	74.18	9.32	762.1
7	73.30	11.32	795.8

Experiments: Compare with state-of-theart methods

Table 3. Comparisons with state-of-the-art approaches on C-ityscapes test set.

Method	BaseNet	mIoU%
DeepLab-v2 [12]	Res-101	70.4
PSPNet [3]	Res-101	78.4
BiSeNet [15]	Res-101	78.9
OCNet[6]	Res-101	80.1
DenseASPP [13]	Dense-161	80.6
PSANet	Res-101	81.5

Table 4. Comparisons with state-of-the-art approaches on thetesting set of PASCAL-Context validate set.

Method	BaseNet	mIoU%
PSPNet [3]	Res-101	47.8
EncNet [11]	Res-101	51.7
DANet [5]	Res-101	52.6
CFNet [17]	Res-101	54.0
ACNet [18]	Res-101	54.1
PSANet	Res-101	55.1

- 1. Background
- 2. Method
- 3. Experiments
- 4. Conclusion

Conclusion

Main contribution:

(1) We propose a Point Set Attention Network (PSANet) to improve self-attention mechanism in noisy pixels and generate intra-class common features for semantic segmentation.

(2) We introduce context-aware mask feature to assist pixels to contribute intra-class mutual improvement.

(3) The proposed PSANet achieves state-of-the-art performance on Cityscapes and PASCAL Context datasets. In particular, PSANet obtains 81.5% mIoU on Cityscapes test set without using coarse data and 55.1% mIoU on PASCAL Context validate set.

Thank you