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Background: Semantic segmentation task

Image semantic segmentation aims to assign semantic labels to every pixel in an image




Background: Applications

.

Instance segmentation Human parsing

Automatic drive Medical diagnosis

Photograph




Background: Fully convolutional network (FCN)
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Background: Contextual information

Multi-scale Context: aggregate multi-scale contextual information equally
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Relation Context: self-attention mechanism captures the long-range dependencies between pixels
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Method: the defect of self-mechanism

(c) Pixel-wise attention (e) Point set attention

(b) Groundtruth (d) Pixel-wise segmentation (f) Point set segmentation




Method: Point set attention network (PSANet)

Point set: current pixel and pixels in its neighborhood
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/ Mask Convolution

Mask: pixels with the same class as current pixel would response highly




Method: Point set attention network (PSANet)
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Generate mask feature P

Apply a mask convolution on feature
B with mask feature P, obtaining an
updated feature Q

Model the relation between updated
feature Q and context feature D
with self-attention mechanism

Adopt M-Loss to regularize the
training
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Experiments: Ablation experiments

Table 1. Ablation experiments of point set attention on C-
ityscapes validation set. Os denotes the output feature size
compared with input image. Point set(w/o mask) denotes the
mask feature in PSAM is set to uniform distribution.

Method os=16(mloU%) o0s=8(mloU%)
baseline 69.06 70.73
+pixel-wise 72.77 75.10
+point set(w/o mask) 73.78 75.37
+point set 74.18 76.54

Table 2. Ablation experiments of point set size on Cityscapes
validation set. k denotes the size of the point set.

k mloU% GFLOPs Memory(MB)

1 72.77 7.10 679.1
3 73.73 8.69 739.3
5 74.18 9.32 762.1
7 73.30 11.32 795.8




Experiments: Compare with state-of-the-
art methods

Table 3. Comparisons with state-of-the-art approaches on C- Table 4. Comparisons with state-of-the-art approaches on the
ityscapes test set. testing set of PASCAL-Context validate set.

Method BaseNet mloU% Method BaseNet mloU%

DeepLab-v2 [12] Res-101 70.4 PSPNet [3] Res-101 47.8

PSPNet [3] Res-101 78.4 EncNet [11] Res-101 51.7

BiSeNet [15] Res-101 78.9 DANet [5] Res-101 52.6

OCNet|6] Res-101 80.1 CFNet [17] Res-101 54.0

DenseASPP [13] Dense-161 80.6 ACNet [18] Res-101 54.1

PSANet Res-101 81.5 PSANet Res-101 55.1
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Conclusion

Main contribution:

(1) We propose a Point Set Attention Network (PSANet) to improve self-attention mechanism in
noisy pixels and generate intra-class common features for semantic segmentation.

(2) We introduce context-aware mask feature to assist pixels to contribute intra-class mutual
improvement.

(3) The proposed PSANet achieves state-of-the-art performance on Cityscapes and PASCAL
Context datasets. In particular, PSANet obtains 81.5% mloU on Cityscapes test set without using
coarse data and 55.1% mloU on PASCAL Context validate set.
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