NOVEL VIEW SYNTHESIS WITH SKIP CONNECTIONS

Juhyeon Kim and Young Min Kim Seoul National University 3D Vision Lab

INTRODUCTION

Novel View Synthesis

Considering the camera pose as a domain, novel view synthesis can be thought as an **image-to-image** translation task

Novel View Synthesis

• One of the most successful in image-to-image translation is the **skip connections**, also known as **U-Net**.

Traditional case

- style/texture transfer
- no global structure change

- Novel view synthesis
- dramatic geometrical transformation
- \rightarrow skip connections cannot be simply applied

(Park, 2017)

Previous Works

- Encoder-decoder structure without any skip connections.
- The works can be divided into two groups:

• Both modules used in sequential or parallel way.

(Park, 2017)

Previous Works

• These works imply standard **skip connections** are not directly applicable to novel view synthesis due to significant shape change. However, none of them have thoroughly investigated the possibilities.

Our Contribution

- We study the effect of various types of **skip connections** on pixel generation and flow prediction module and find the appropriate way to apply residual connections.
- For pixel generation, we find that using *flow-based hard attention* mechanism to skip connection is effective. Flow prediction enjoys marginal benefit from skip connections in deeper layers.

PROPOSED METHOD

Encoder-Decoder Architecture

U-Net Architecture

U-Net with Attention Mechanism

Flow-Based Hard Attention

Flow can be thought as a hard attention

Flow-Based Hard Attention

Flow can be thought as a hard attention

EXPERIMENTS & RESULTS

- Two ShapeNet object classes (car, chair)
 - 500 models for training and 198 models for testing.
 - Each model rendered at 18 different azimuths with fixed distance, elevation
- Real scene (KITTI) and synthetic scene (Synthia)
 - 6 DoF as a pose representation.
 - 80% for training and 20% for testing.
 - Maximum 10 frame difference is allowed.

Dataset modified from previous work. (Sun, 2018)

ΚΙΤΤΙ

Synthia

256 by 256 sized

Baselines

- Test on pixel generation and flow prediction module.
- Various skip connection strategies were tested.

	Attention Type	Memory		
Vanilla	-	0(1)		
U-Net	-	0(1)		
Attn U-Net (Oktay, 2018)	ith pixel to ith pixel	O(HW)		
Cross Attn	ith pixel to image	$O(H^2W^2)$		
Flow Attn	<i>ith pixel to jth pixel</i>	O(HW)		

Results – Pixel Generation

Method	Car		Chair		Synthia		KITTI	
	L1	SSIM	L1	SSIM	L1	SSIM	L1	SSIM
Vanilla	0.0332	0.8910	0.0622	0.8535	0.0599	0.7324	0.0947	0.6681
U-Net	0.0327	0.8935	0.0623	0.8559	0.0544	0.7521	0.0838	0.6842
Attn U-Net	0.0330	0.8926	0.0629	0.8550	0.0548	0.7575	0.0835	0.6870
Cross Attn	0.0322	0.8961	0.0614	0.8573	0.0600	0.7331	0.0969	0.6659
Flow Attn	0.0259	0.9091	0.0499	0.8725	0.0512	0.7597	0.0776	0.6939

L1 : lower is better

SSIM : higher is better

Input Target Vanilla U-Net Attn Cross Flow U-Net Attn Attn

Synthia

KITTI

Results – Flow Prediction

- All of the above methods seems not that helpful.
- Instead, we find that reduced numbers of the skip connections N_s by removing the outermost layers brings marginal improvement.

 $N_s = 3 \qquad \qquad N_s = 2 \qquad \qquad N_s = 1$

 $\times y$ -axis means relative value to vanilla's L1 loss (lower is better), x-axis means N_s

Channel-wise Averaged Hidden Layers

- x_e^l : encoder's feature
- $x_{d,0}^l$: decoder's feature
- $g(x_e^l, t^l)$: rearranged x_e^l

Similar

Different

Conclusion

- We investigate how skip connections affect two widely used novel view synthesis module, pixel generation and flow prediction.
- We propose how the **skip connections** can be effectively applied on image-to-image translation under significant geometric change.

Code is available on github.

https://github.com/juhyeonkim95/NovelViewSynthesis

If you have any question, please email us.

E-mail : cjdeka3123@snu.ac.kr

