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•High-quality acquisition technologies: CT, MRI, PET…

• Limitations of Magnetic Resonance:

• Hardware

• Signal-to-Noise ratio, blurring

• Limited acquisition time or movements of the patient

•The goal is to increase the resolution and remove noise of 

medical images simultaneously

MEDICAL IMAGING



INTRODUCTION: IMAGE SUPER-RESOLUTION

• Technique reconstructs a higher-resolution (HR) image 

or sequence from the observed low-resolution (LR) 

images

• Challenging:

• High-frequency content typically cannot be recovered 

from the LR image

• LR image can yield several possible HR images 

• Several approaches: traditional interpolation, 

Frequency domain algorithms, example-based or 

self-similarity methods…

• They usually assume there is little noise in the images



INTRODUCTION: NOISE REMOVAL

• MR images are mainly corrupted by Rician noise

• There are specific approaches to remove noise: 

Non-local means filters, Wavelet subbands mixing, 

Grouping and collaborative filtering

• How to combine them with SR?

• Denoising before applying SR

• Iterative procedure (denoising and SR)

• Using external data (an additional HR image)

• These methodologies may remove details and fine 

textures, which will be magnified in the SR step



THE MODEL
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MFT3D



𝒙 = 𝑥1, 𝑥2, 𝑥3 ∈ ℤ3 ⟷ α𝒙 = α𝑥1, α𝑥2, α𝑥3 ∈ ℝ3, α ∈ ℝ ⟷ 𝒚 = 𝑦1, 𝑦2, 𝑦3 ∈ ℤ3

•We consider the LR voxel values which belong to the parallelepiped 

where the HR voxel 𝒚 belongs: 

ζ 𝒚, 𝑨, 𝒃 = 𝑓 𝒙 round 𝑨𝛼𝒙 + 𝒃 = round 𝑨𝒚 + 𝒃

•Matrix 𝑨𝟑×𝟑 and vector 𝒃𝟑×𝟏 defines de tiling space (bins)

• The MFT3D is defined as:

መ𝑓 𝒚 = Θ ψ 𝒚, 𝑨1, 𝒃1 , … , ψ 𝒚, 𝑨𝐻 , 𝒃𝐻

∀𝑖 ∈ 1,… , 𝐻 , ψ 𝒚, 𝑨𝑖 , 𝒃𝑖 = Θ ζ 𝒚, 𝑨𝑖 , 𝒃𝑖

MFT3D DEFINITION
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• Θ represents a median operation by using sample quantiles based on 

mid-distribution functions

• For discrete distributions, they behave better than the classical sample quantiles, 

which have no asymptotic normality properties

• Demonstrated properties:

• The MFT3D converges to the median of the distribution of the parallelepiped 

medians ψ 𝒚, 𝑨, 𝒃

• The MFT3D defines regions so that inside a region it always converges to the 

same value as 𝐻 → ∞

• The MFT3D converges in distribution when the mid-sample median is employed

MFT3D FUNDAMENTALS



• Dataset: BrainWeb (T1, T2, PD) and CIMES (T2)

• Competitors:

• 3D Denoising method + spline interpolation: NLM3D (non-local means),

WSM (wavelets), ODCT3D (cosine transform), PRI-NLM3D, BD4M (local

correlation)

• 3D upsampling method effective against noise: NLMU (non-local means

upsampling):

• LR images generation: 3D Gaussian filter + cubic spline interpolation

• Evaluation: MSE (lower is better) and SSIM (higher is better)

• Parameters: α ∈ {2,2.5,3,3.5,4}, 𝐻 = 150

METHODS



PARAMETER SELECTION

•We define 𝐵𝑖𝑛𝑆𝑖𝑧𝑒 as the length of the sides (the same) of the 

parallelepiped which defines the bin, measured in pixels in the LR 

image
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RESULTS

• Hallucinations are avoided: MFT3D only takes into account the 

voxels which are neighboring to the estimated one



•Method for 3D MR image super-resolution and noise removal

simultaneously

• Based on a two-step mid-sample median filters

• Convergence is demonstrated and the noise distribution in the image

is not relevant

•Great results with integer and fractional zooms and heavy noise

• Finer details are preserved

• Over-smoothing and hallucinations are avoided

• Integration of the median filter transform into SR deep networks

CONCLUSIONS
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