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Intermittent particle filter

Dynamical system

x(t+ 1) = ft(x(t),w(t)) for t = 0, . . . , T− 1
y(t) = gt(x(t), v(t)) for t ∈ M
x(0) ∼ F

Random variables x(0), w(t) and v(t) follow known distributions

An intermittent particle filter estimates x(t) from previous measurements y(t):

x̂M(t) = PF[ y(τ) | τ ≤ t, τ ∈ M ]
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Optimal measurement times

Goal: Measurement time setM that minimizes the expected mean square error over the
complete horizon

min
M⊆{0,...,T}

E

[ T∑
t=0

∥x(t)− x̂M(t)∥2
]
subject to |M| = N
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Monte Carlo estimation

Repeat for k = 1, . . . , K:
M

Model

Particle Filter

{yk(t)}t∈M

{x̂kM(t)}t=0,...,T

MSE

{xk(t)}t=0,...,T

MSEk =
∑T

t=0 ∥xk(t)− x̂kM(t)∥2

Approximate the objective function:

E

[ T∑
t=0

∥x(t)− x̂M(t)∥2
]
≈ 1
K

K∑
k=1

MSEk
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Optimization

min
M⊆{0,...,T}

E

[ T∑
t=0

∥x(t)− x̂M(t)∥2
]
subject to |M| = N

Combinatorial optimization problem with (T+ 1)!
(T+ 1− N)!N! possibilities

Computationally intractable −→ Genetic algorithm
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Summary

1. The problem of optimal measurement budget allocation is modeled as a
combinatorial optimization problem

2. Objective function hard to compute −→ Monte Carlo estimation

3. Combinatorial optimization problem hard to solve −→ Genetic algorithm
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Example

Common Benchmark model [Arulampalam et al., 2002; Carlin et al., 1992;
Kadirkamanathan et al., 2002; Kitagawa, 1996]

x(t+ 1) = x(t)
2 +

25x(t)
1+ x(t)2 + 8 cos(1.2t) + w(t) for t = 0, . . . , T− 1

y(t) = x(t)2
20 + v(t) for t ∈ M

x(0) ∼ N (0, 52)
w(t) ∼N (0, 1)
v(t) ∼N (0, (sin(0.25t) + 2)2)

For T = 60 time intervals and |M| = N = 21 measurements
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One trajectory
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Comparison with regular particle filter

Relative gain

g =
MSERegular −MSEOptimal

MSERegular

Positive in 87.5% of cases

Mean is 27.7%
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Conclusion

Take home message
• Filtering can be improved by choosing optimal measurement times
• A genetic algorithm works well for this purpose

Further work
• Select the measurement times online instead of fixing them a priori
• Robustness analysis
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Thank you !
Questions ?
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