

Multi-Scale Explainable Feature Learning for Pathological Image Analysis using Convolutional Neural Networks

National Institute of Advanced Industrial Science and Technology (AIST), Japan

OKazuki Uehara, Masahiro Murakawa, Hirokazu Nosato, Hidenori Sakanashi

Contributions

We propose an **explainable feature learning** method for CADs of pathological images using a CNN:

- Extracting multi-scale features
- Constructing feature dictionaries with vector quantization
- Visualizing items in the dictionaries as images

Experimental results showed 0.89 of AUROC on detecting atypical tissues in pathological images

Introduction

Pathology

AIS7

- To determine treatment of cancer
- Requiring considerable time and effort Exploring tiny atypical cells at multiple different scales by evaluating dozens of cells on a slide image

Computer Aided Diagnosis (CAD)

Relieve pathologist's burden

Convolutional Neural Networks (CNN): High accuracy for pathological image analysis

Explainability of CNNs

CAD systems should be accurate and explainable to ensure their reliability Explainability: Basis of diagnoses can be interpreted by humans

Decisions made by CNNs are hardly interpretable

Activation based explanations cannot tell the reasons for their decisions

Accurate and Explainable diagnosis based on a dictionary using a CNN

Multi-scale Explainable Feature Learning

Multi-scale Explainable Feature Learning

Multi-scale Explainable Feature Learning

Explainable Classification

- Constructing *dictionary* of pathological features from dataset
- Classification is based on the amount of dictionary items in an image

Multi-scale Feature Extraction

Multiple dictionaries at different scale allow the network to extract features correctly Feature vectors in downscaled feature maps cover wider part of original image

Explanations for Basis of Diagnosis

Our method provides two types of explanations

1. Image of quantized features

Users can visually understand which features in the dictionary contributed to decisions

2. Contribution map

Users can visually understand the part **where** contributed to decisions

Images of Quantized Features

CNN decoder visualizes items in the feature dictionary from embedded feature space to image space

Contribution Map

Contribution map presents important parts for classification in an image

feature extraction

Mapping weights according to **similarity**

Experimental Setup

Comparison methods

- ✓ Inception V3
- ✓ Prototype based CNN [Uehara+, 2019]
- ✓ Our methods (single scaled feature extraction)

Dataset

Pathological image patches of a uterine cervix Each image patch has 256x256 pixel Normal : Train (67,805) Test (15,955) Abnormal: Train (13,143) Test (2,451)

Classification Result

Our method yielded the highest AUROC

Compared with Explainable CNN

Constructing dictionaries via end-to-end learning makes a good classification

Compared with Single Scale Methods

Combining multi-scale dictionaries shows the best classification

Results of Visual Explanations

Contribution map

Contributed features

Quality of decoded images should be improved

Conclusion

We have proposed multi-scale explainable feature learning method to ensure reliable diagnosis for pathological image analysis

✓ Accurate

- > Multiple dictionaries for multi-scale features
- End-to-end dictionary learning

\checkmark Easy to interpret its basis of diagnosis

- Linear combination of cooccurrence of items in dictionaries
- Visualize the items as images

Experimental result demonstrated that our method has advantages of **explainability** compared with the conventional **black-box** models