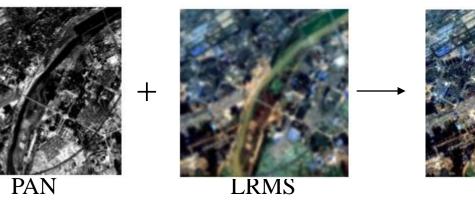
Maskpan: Mask Prior Guided Network for Pansharpening

Xue Rui¹, Yang Cao^{3,*}, Yu Kang^{2,3}, Weiguo Song¹, Rui Ba¹


¹State Key Laboratory of Fire Science, ²Institute of Advanced Technology, ³Department of Automation, School of Information Science and Technology, University of Science and Technology of China

Introduction&Problem

> Pansharpening

- > Previous works: visual pleasing
- Traditional image processing methods
- Deep Learning based pansharpening methods

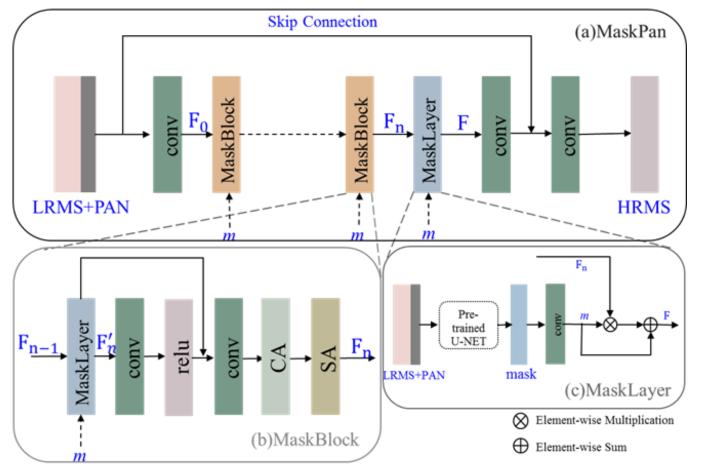

> Limitation: visual discrimination

- Pansharpened images may be limited in providing discriminablity for visual tasks
- The applications of satellite images are greatly affected by image visual discrimination.

HRMS 1

[1]PAN(panchromatic images), LRMS(low spatial resolution multispectral images), HRMS(high resolution multispectral images) Liu X, Wang Y, Liu Q. PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening[J]. 2018.

Motivation


High-level semantic feature has the guiding role to low-level image task contribution
 Existing pansharpening methods are limited in providing discriminability for visual tasks

Contribution

- The CNN-based method that utilizes high semantic features (mask prior) to guide pansharpening task.
- The features of MS and PAN images are fused with prior information in feature domain by an attention mechanism.
- > Semantic segmentation is adopted as an evaluation metric for the visual discrimination.

Architecture

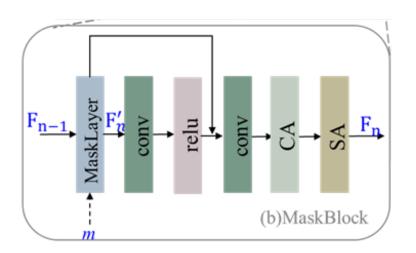


Figure 1. Structure illustration of the proposed MaskPan. (a) network architecture of MaskPan. (b) MaskBlock: integrating the MaskLayer and attention mechanism, where CA and SA refer to the (channel-wise and spatial attention). (c) MaskLayer: showing the combination way of mask prior, all MaskLayers share the same mask input.

Architecture

MaskBlock
 Inspired by the CBAM of [2]
 MaskLayer / channel& spatial attention mechanism

$$F_{n} = G_{MB,n}(F_{n-1}, m)$$

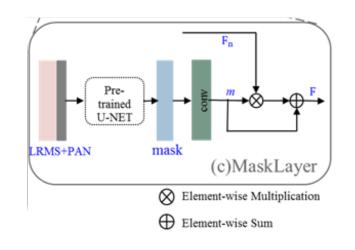
= $G_{MB,n}\left(G_{MB,n-1}\left(\cdots\left(G_{MB,1}(F_{0}, m)\right)\cdots\right)\right)$

 $G_{MB,n}$: the operations of the *n*-th MB *m* : estimated mask prior information

[2]CA(channel attention), SA(spatial attention)

S. Woo, J. Park, J. Lee, I. Kweon, "CBAM: Convolutional Block Attention Module," European Conference on Computer Vision (ECCV), 2018

Architecture


➤ MaskLayer

Designed based on the the structure of SFT Layer [3]

n-th MaskLayer in the *n*-th MaskBlock

 $m' = u(x, p; \alpha)$ $F'_{n} = mF_{n-1} + m$

m':mask generated from U-Net m: processed mask prior F_{n-1} :features from (n-1)-th Mask Block F'_n :features to be fed into the attention layer

[3]X. Wang, K. Yu, C. Dong, C. Loy, "Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform" The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606-615,2018

Dataset:World-View3 satellite image dataset of the *kaggle* DSTL competition[4]

> Ablation study: Comparison of different kinds of mask prior

- Mask_*C*: directly concatenates the mask with the stacked up-sampled MS and PAN images
- Mask_*M*: ten gray-level prior maps (multiplies the mask with stacked up-sampled MS images and PAN images) concatenated with the stacked up-sampled MS images and PAN images
- Mask_*EX*: only MS and PAN images

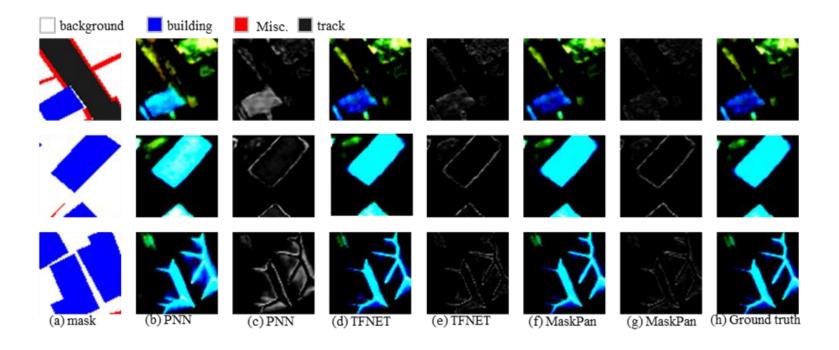
ask prior.								
Method	PSNR (†)	SSIM (†)	SCC (†)	SAM (↓)	ERGAS (↓)			
Mask_ C	27.605	0.982	0.998	0.016	0.590			
Mask_ M	27.694	0.982	0.998	0.016	0.590			
Mask_E X	27.714	0.982	0.998	0.016	0.576			
MaskPa n	28.401	0.983	0.999	0.015	0.535			

Table 1.Comparison of the methods with different types of mask prior.

[4] Dstl Satellite Imagery Feature Detection, https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection

Comparison of MaskPan with other models *1.Image quality evaluation indices*: PSNR/SSIM/SCC/SAM/ERGAS

Table 3. Comparison of image quality evaluation indices.								
Method	PSNR (†)	SSIM (†)	SCC (†)	SAM (↓)	ERGAS (\downarrow)			
BT[25]	19.855	0.795	0.901	1.452	3.578			
IHS[26]	22.094	0.946	0.924	1.570	2.006			
PNN[2]	20.343	0.878	0.969	0.086	2.553			
TFNET [8]	26.799	0.960	0.995	0.034	0.792			
Mask_E X	27.714	0.982	0.998	0.016	0.576			
MaskPa n	28.401	0.983	0.999	0.015	0.535			


Comparison of MaskPan with other models

2. Evaluation metric for visual discrimination of pansharpened images: IoU

Method	IoU-mean	IoU- buildings	IoU - Misc.	IoU -road	IoU -track	IoU -trees	IoU -crops	IoU - waterway	IoU - standing water
PNN[2]	0.419	0.691	0.104	0.656	0.343	0.602	0.765	0.801	0.132
TFNET[8]	0.448	0.706	0.170	0.732	0.369	0.615	0.827	0.824	0.134
Mask_EX	0.452	0.710	0.170	0.734	0.391	0.614	0.842	0.829	0.135
MaskPan	0.465	0.728	0.173	0.739	0.436	0.634	0.849	0.841	0.143

Table 2. Comparison of segmentation results for different classes in terms of IoU.

Comparison of MaskPan with other models *3.Visual comparison*

Figure 2. Comparison of pansharpening results for WordView-3 images. (b), (d) and (f) are the pansharpening results of the network PNN, TFNET and our MaskPan, while (c), (e) and (g) are the corresponding residual images; (a) and (h) are the ma-sk and ground truth of the images, respectively.

Thank You!

