

The University of Dublin

V-SENSE

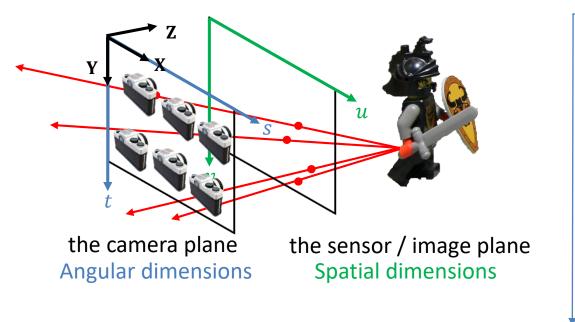
A Spatio-Angular Binary Descriptor for Fast Light Field Inter View Matching

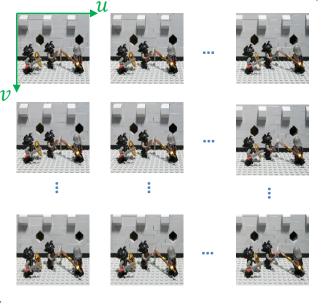
Dr Martin Alain (alainm@tcd.ie), Prof Aljosa Smolic IEEE International Conference on Image Processing 2020 Session 3D-02 Light-Field Image Processing and Compression

Outline

- Introduction
- Proposed binary descriptor for light fields
- Experiments and results
- Conclusion

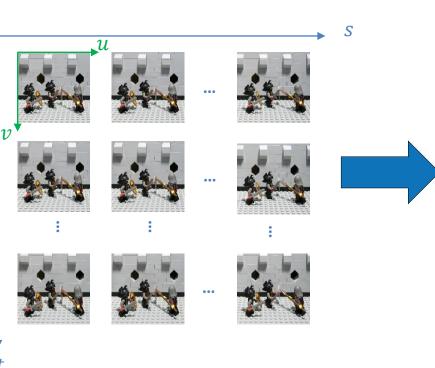
Outline

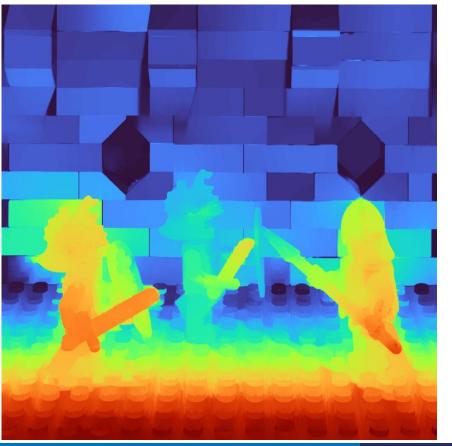

Introduction


- Proposed binary descriptor for light fields
- Experiments and results
- Conclusion

Light field imaging

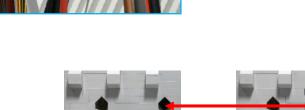
2 parallel planes parameterization




The light field
$$L = L(s, t, u, v)$$

Light field applications

Disparity / Depth estimation

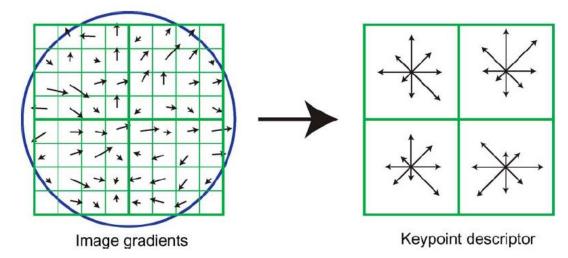

Light field applications

Disparity / Depth estimation

- EPI line slope
- Defocus cues
- Inter-view matching
- + Learning-based

S

U


Chen, Yang, Martin Alain, and Aljosa Smolic. "Fast and accurate optical flow based depth map estimation from light fields." *Irish Machine Vision and Image Processing Conference (IMVIP)*. 2017

Descriptors

2D pixel descriptor

- SIFT [1]
- DAISY [2]
- BOOM [3]

[1] Lowe, David G. "Object recognition from local scale-invariant features." *Proceedings of the seventh IEEE international conference on computer vision*. Vol. 2. Ieee, 1999.

[2] Tola, Engin, Vincent Lepetit, and Pascal Fua. "Daisy: An efficient dense descriptor applied to wide-baseline stereo." *IEEE transactions on pattern analysis and machine intelligence* 32.5 (2009): 815-830.

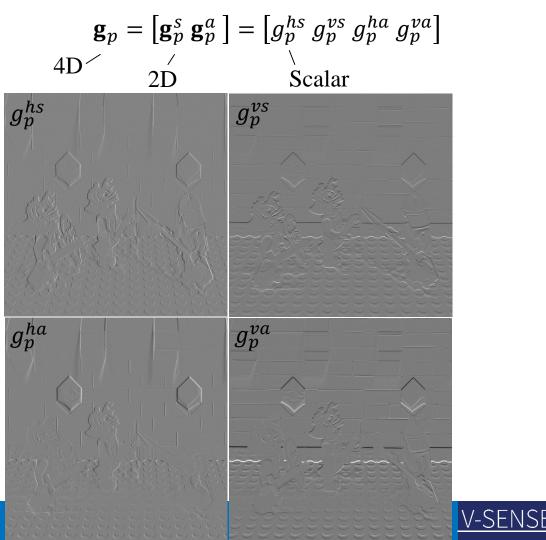
[3] Schaffner, Michael, et al. "Towards edge-aware spatio-temporal filtering in real-time." *IEEE Transactions* on *Image Processing* 27.1 (2017): 265-280.

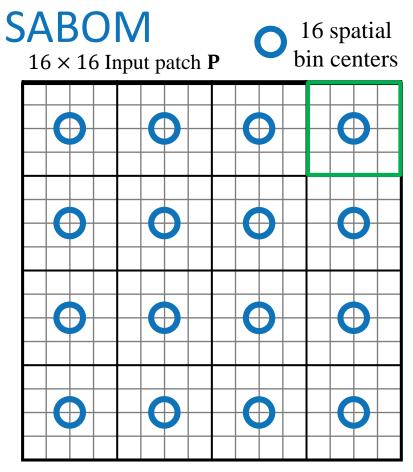
Outline

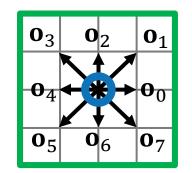
- Introduction
- Proposed binary descriptor for light fields
- Experiments and results
- Conclusion

SABOM

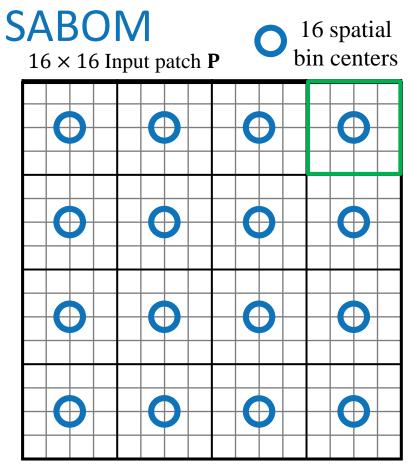
Spatio-Angular Binarised Orientation Maps

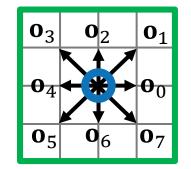

- Extension of BOOM for light fields
- Exploits the 4D light field gradient
- Application to fast disparity map estimation




SABOM

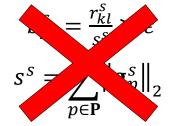
4D Gradient computation

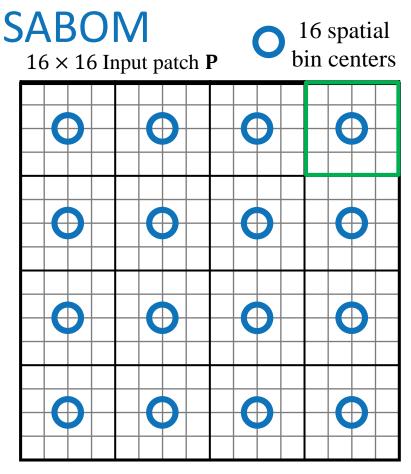


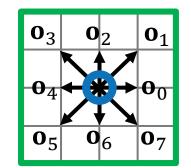


$$r_{kl}^{s} = \sum_{p \in \mathcal{B}_{l}^{s}} \max\left(0, \left\langle \mathbf{o}_{k} | \mathbf{g}_{p}^{s} \right\rangle\right)$$
$$k = 0 \dots 7, l = 0 \dots 15$$

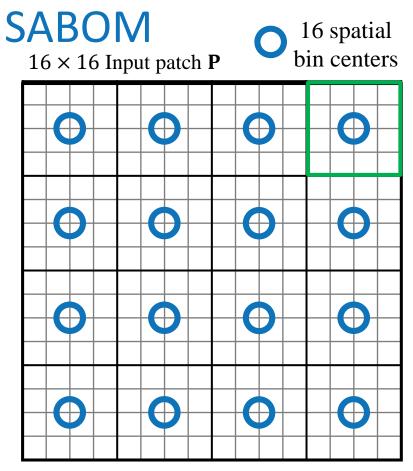
 4×4 Pixel block \mathcal{B}^s

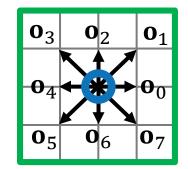



$$r_{kl}^{s} = \sum_{p \in \mathcal{B}_{l}^{s}} \max\left(0, \left\langle \mathbf{o}_{k} | \mathbf{g}_{p}^{s} \right\rangle\right)$$
$$k = 0 \dots 7, l = 0 \dots 15$$


 4×4 Pixel block \mathcal{B}^s

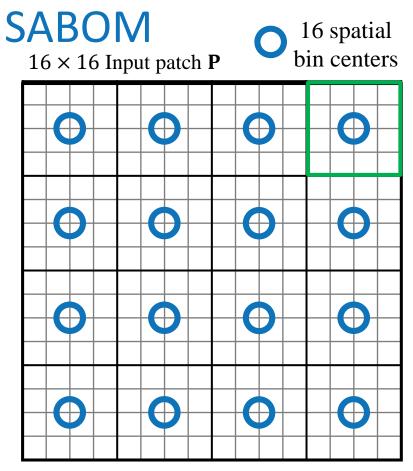
Naive binarisation:

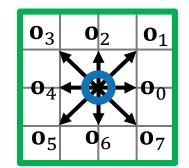

$$r_{kl}^{s} = \sum_{p \in \mathcal{B}_{l}^{s}} \max\left(0, \left\langle \mathbf{o}_{k} | \mathbf{g}_{p}^{s} \right\rangle\right)$$
$$k = 0 \dots 7, l = 0 \dots 15$$


 4×4 Pixel block \mathcal{B}^s

$$s^{s} = \sum_{p \in \mathbf{P}} \alpha \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{\infty} + \beta \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{1}$$

Seol, Changkyu, and Kyungwhoon Cheun. "A low complexity Euclidean norm approximation." *IEEE Transactions on Signal Processing* 56.4 (2008): 1721-1726.

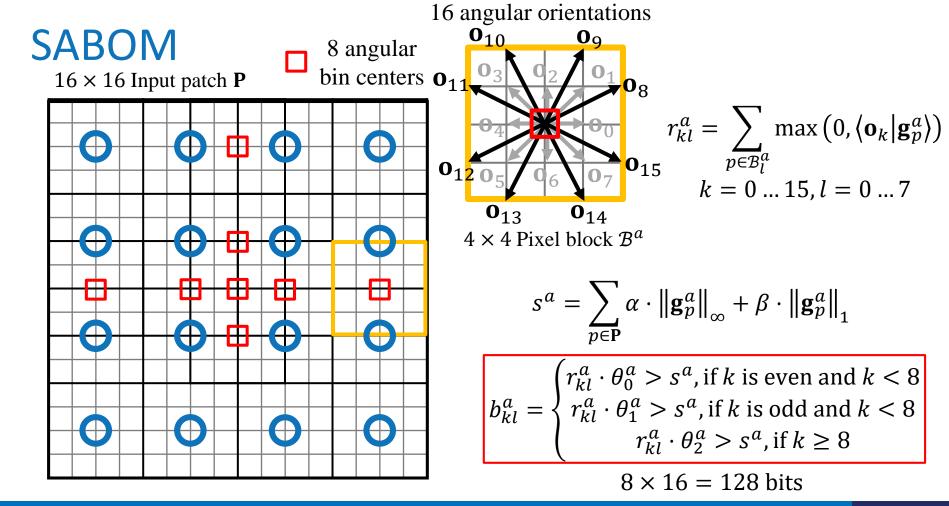

$$r_{kl}^{s} = \sum_{p \in \mathcal{B}_{l}^{s}} \max\left(0, \left\langle \mathbf{o}_{k} | \mathbf{g}_{p}^{s} \right\rangle\right)$$
$$k = 0 \dots 7, l = 0 \dots 15$$


 4×4 Pixel block \mathcal{B}^s

$$s^{s} = \sum_{p \in \mathbf{P}} \alpha \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{\infty} + \beta \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{1}$$

$$b_{kl}^s = r_{kl}^s \cdot \theta > s^s, \theta = \frac{1}{\varepsilon}$$

$$r_{kl}^{s} = \sum_{p \in \mathcal{B}_{l}^{s}} \max\left(0, \left\langle \mathbf{o}_{k} | \mathbf{g}_{p}^{s} \right\rangle\right)$$
$$k = 0 \dots 7, l = 0 \dots 15$$


 4×4 Pixel block \mathcal{B}^s

$$s^{s} = \sum_{p \in \mathbf{P}} \alpha \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{\infty} + \beta \cdot \left\| \mathbf{g}_{p}^{s} \right\|_{1}$$

$$b_{kl}^{s} = \begin{cases} r_{kl}^{s} \cdot \theta_{0}^{s} > s^{s}, \text{ if } k \text{ is even} \\ r_{kl}^{s} \cdot \theta_{1}^{s} > s^{s}, \text{ if } k \text{ is odd} \end{cases}$$

 $16 \times 8 = 128$ bits

Implementation details

- C++ implementation based on OpenCV (github.com/V-Sense)
- CPU parallelisation over light views with OpenMP
- Use of integer arithmetic, no division
- Efficient dense scan implementation, re-using gradient response computed for neighbours, gradient is precomputed for the whole image
- Distance between descriptor computed using popcount 64 instruction
- Binarisation implemented with bitshift
- $\alpha = 6, \beta = 2$
- $\theta_0^s = 512, \theta_1^s = 256, \theta_0^a = \theta_1^a = \theta_2^a = 512$

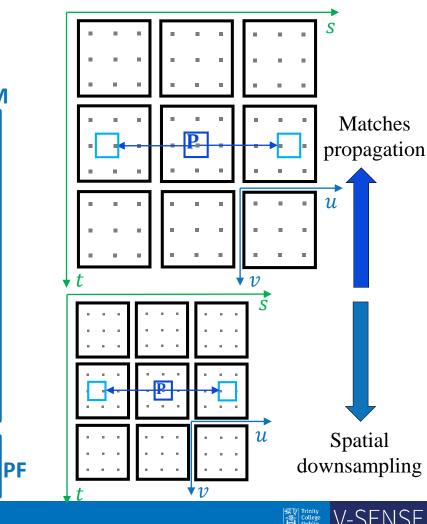
SABOM

Application to disparity map estimation: LF CPM + PF

Schaffner, Michael, et al. "Towards edge-aware spatio-temporal filtering in real-time." *IEEE Transactions on Image Processing* 27.1 (2017): 265-280.

Chen, Yang, Martin Alain, and Aljosa Smolic. "Fast and accurate optical flow based depth map estimation from light fields." *Irish Machine Vision and Image Processing Conference (IMVIP)*. 2017.

SABOM


Application to disparity map estimation: LF CPM + PF

CPM

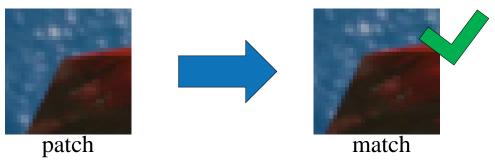
- Gaussian pyramid computed for all views
- Starting from coarse level, matches between descriptors are computed on a sparse grid
- Estimates are propagated to the next level
- At finest level, foward backward check is performed

Check threshold θ_{desc} is used to remove outliers

Apply permeability filter to obtain dense disparity map from sparse matches

Outline

- Introduction
- Proposed binary descriptor for light fields
- Experiments and results
- Conclusion

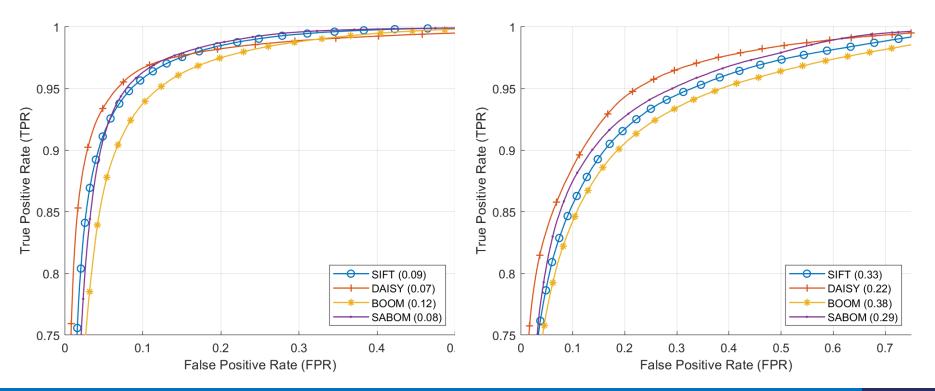

- HCI benchmark <u>lightfield-analysis.uni-konstanz.de</u>
 - 24 light fields
 - Disparity range [-3.6, 3.5]
- INRIA Dense <u>clim.inria.fr/Datasets/InriaSynLF/index.html</u>
 - 39 light fields
 - Disparity range [-5.5, 5.3]
- Stanford Gantry lightfield.stanford.edu
 - 12 light fields

ROC performance

Procedure

- Split all light fields views in 32x32 patches and add AWGN with $\sigma_n = 0.1$
- Create pair of ground truth matches using ground truth disparity maps
- Create a non-match pair for each match by randomly sampling a patch within a 5 pixels radius around the ground truth match

- Compute descriptor distance between pairs of patches
- Use a sweeping threshold to to compute ROC performance curve



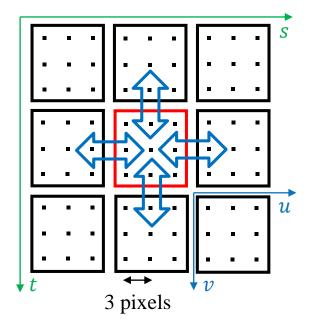
ROC performance

ROC curves

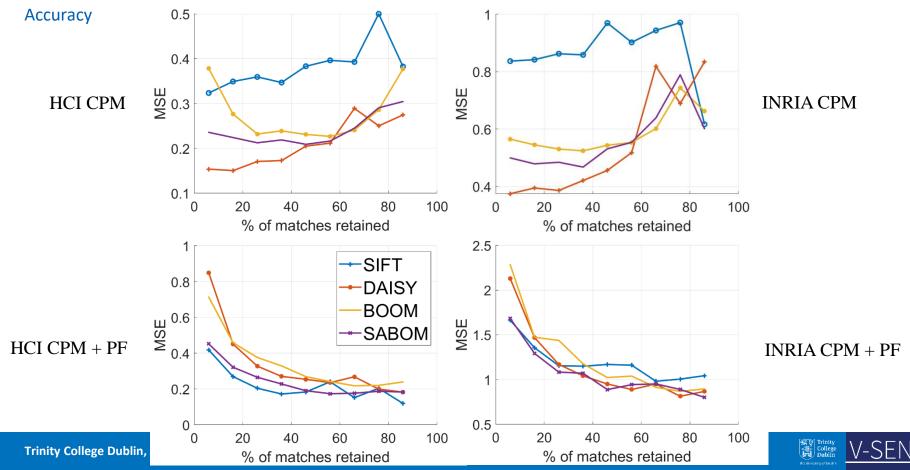
HCI dataset

INRIA Dense dataset

ROC performance


Computation time

	Single	Patch	
Descriptor	descriptor (μ s)	distance (ms)	
SIFT	0.635	0.152	
DAISY	0.254	0.132	
BOOM	0.130	0.020	
SABOM (proposed)	0.176	0.021	



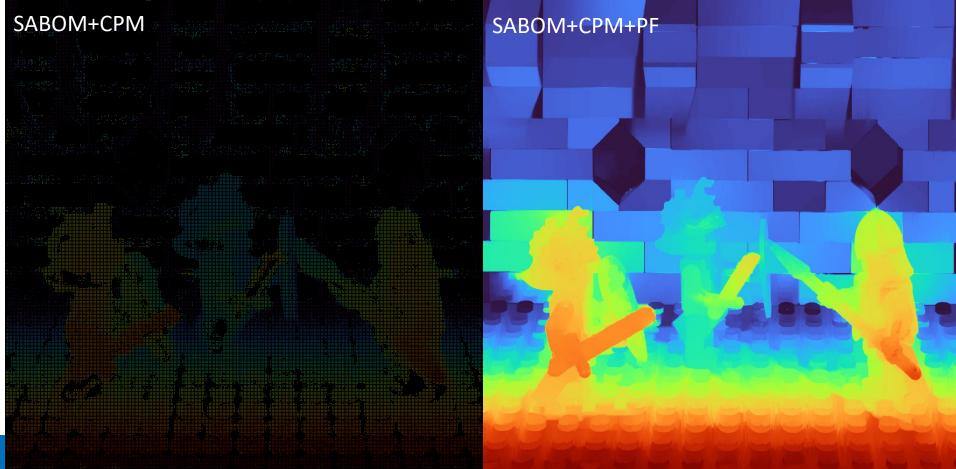
Procedure

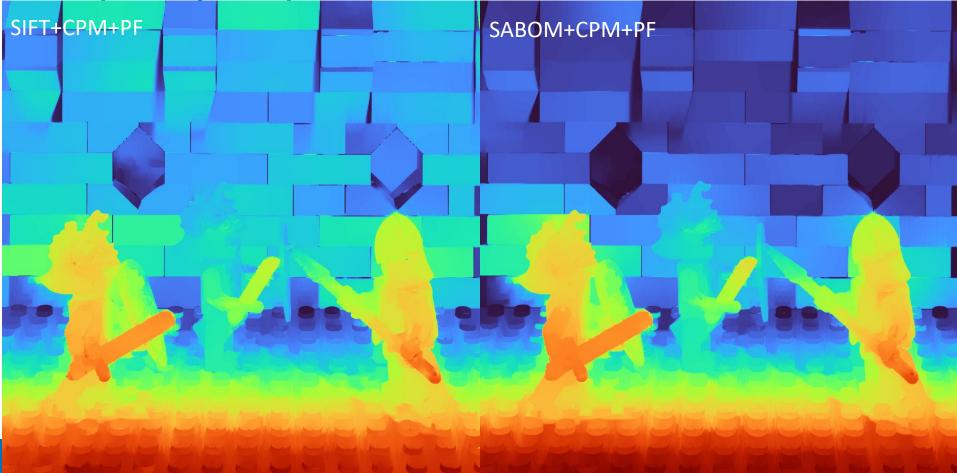
- Estimated on the center view, using 3x3 surrounding views
- CPM grid spacing: 3 pixels
- Sweep θ_{desc} range so that matching density ranges from 0 to 100%
- Quality evaluated using MSE

Computation time (in seconds)

	CPM Pyramid Descriptor				CPM	PF
	Level 2	Level 1	Level 0	Total	Matching	
SIFT	0.131	0.496	1.952	2.579	0.527	
DAISY	0.054	0.219	0.843	1.116	0.423	0.569
BOOM	0.025	0.099	0.382	0.520	0.325	0.309
SABOM	0.059	0.236	0.564	0.893	0.367	

Qualitative results


More results online:


v-sense.scss.tcd.ie/research/a-spatio-angular-binary-descriptor-for-fast-lightfield-inter-view-matching

Code available:

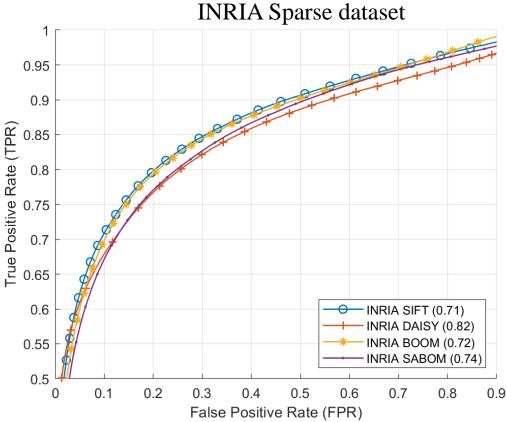
github.com/V-Sense

Outline

- Introduction
- Proposed binary descriptor for light fields
- Experiments and results
- Conclusion

Conclusion

Summary


- A novel binary descriptor is introduced for fast and accurate light field inter fiew matching
- The light field spatial and angular gradients are exploited
- Experiments demonstrate improved performance compared to existing descriptors in terms of ROC performance and when applied to disparity estimation

Conclusion

Limitations

 Not suited for sparsely sampled light fields

Conclusion

Future work

- Address limitations
- Use in existing framework for more accurate disparity estimation
- Dąbała, Łukasz, et al. "Efficient Multi-image Correspondences for On-line
 Include in other applications Light Field Video Processing." Computer Graphics Forum. Vol. 35. No. 7. 2016.
 - LFBM5D
 - Light field colour correction

Alain, Martin, and Aljosa Smolic. "Light field denoising by sparse 5D transform domain collaborative filtering." *2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP)*. IEEE, 2017. Alain, Martin, and Aljosa Smolic. "Light field super-resolution via LFBM5D sparse coding." *2018 25th IEEE international conference on image processing (ICIP)*. IEEE, 2018.

Grogan, Mairead and A. Smolic, "L2 based colour correction for light field arrays", in Proc. ACM CVMP, 2019. Matysiak, Pierre, et al. "High quality light field extraction and post-processing for raw plenoptic data." *IEEE Transactions on Image Processing* 29 (2020): 4188-4203.

The University of Dublin

V-SENSE

Many Thanks!

- <u>alainm@tcd.ie</u>
- <u>https://v-sense.scss.tcd.ie/research/light-field-imaging/</u>
- <u>https://v-sense.scss.tcd.ie/research/a-spatio-angular-binary-descriptor-for-fast-light-field-inter-view-matching/</u>
- <u>https://github.com/V-Sense/</u>