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Spectral Imaging

Capture specific light spectra, e.g., blue, green, red
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Spectral Imaging

Capture specific light spectra, e.g., blue, green, red, UV, NIR



Chair of Multimedia Communications and Signal Processing

Genser: Deep Learning Based Cross-Spectral Disparity Estimation

Page 4

Applications

• Healthcare

Spectral imaging:
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Applications

• Healthcare

Spectral imaging:

• Food quality assessment

• Agriculture

• Restoration

• Recycling
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Outline

• Motivation

• State-of-the-Art Techniques

• Novel Cross-Spectral Training for Deep Learning

• Evaluation

• Conclusion and Reference Implementation
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Stereo Cameras with Different Spectral Filters

Self-manufactured prototype
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Stereo Cameras with Different Spectral Filters

Self-manufactured prototype

→
Cheap spectral imager:
• Multi-spectral data
• Depth information
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Stereo Cameras with Different Spectral Filters

Self-manufactured prototype

CWL: 524 nm

CWL: 950 nm
→

Cheap spectral imager:
• Multi-spectral data
• Depth information
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Problem Statement and Challenges

Composed false color image

Problem Statement:
• Recordings at different positions
• Different content (due to spectral filters) 

at different positions
➢ Pixel-wise compensation (disparity)

CWLs: 950 nm, 524 nm, -
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Problem Statement and Challenges

Composed false color image

Problem Statement:
• Recordings at different positions
• Different content (due to spectral filters) 

at different positions
➢ Pixel-wise compensation (disparity)

CWLs: 950 nm, 524 nm, -

↯
Conventional stereo imaging
• Recordings at different positions
• Same content



Chair of Multimedia Communications and Signal Processing

Genser: Deep Learning Based Cross-Spectral Disparity Estimation

Page 15

State-of-the-Art Cross-Spectral Disparity Estimation

Cross-Spectral Disparity Estimation:

• Design of structural similarity cost functions, e.g.,  [1], [2], [3]

• Cost aggregation, e.g., semi-global matching [4]

[1] T. Rukkanchanunt, T. Shibata, M. Tanaka, and M. Okutomi, “Disparity map estimation from cross-modal stereo,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Nov. 2018, pp. 988–992.
[2] O. Zeglazi, M. Rziza, A. Amine, and C. Demonceaux, “Accurate dense stereo matching for road scenes,” in Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2017, pp. 720–724.
[3] S. Mattoccia, F. Tombari, and L. Di Stefano, “Reliable rejection of mismatching candidates for efficient zncc template matching,” in Proc. IEEE International Conference on Image Processing (ICIP), Oct. 2008, pp. 849–852.
[4] H. Hirschmüller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2005, vol. 2, pp. 807–814.
[5] J. Chang and Y. Chen, “Pyramid stereo matching network,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 5410–5418.
[6] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution decomposition for match density estimation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019, pp. 6037–6046.
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State-of-the-Art Cross-Spectral Disparity Estimation

Cross-Spectral Disparity Estimation:

• Design of structural similarity cost functions, e.g.,  [1], [2], [3]

• Cost aggregation, e.g., semi-global matching [4]

Conventional Deep Learning-Based Disparity Estimation

• Mono-modal registration (same spectral filters, typically RGB) [5], [6]

• Fast as well as high-quality disparity estimation

• Outperforms classical template matching approaches

[1] T. Rukkanchanunt, T. Shibata, M. Tanaka, and M. Okutomi, “Disparity map estimation from cross-modal stereo,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Nov. 2018, pp. 988–992.
[2] O. Zeglazi, M. Rziza, A. Amine, and C. Demonceaux, “Accurate dense stereo matching for road scenes,” in Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2017, pp. 720–724.
[3] S. Mattoccia, F. Tombari, and L. Di Stefano, “Reliable rejection of mismatching candidates for efficient zncc template matching,” in Proc. IEEE International Conference on Image Processing (ICIP), Oct. 2008, pp. 849–852.
[4] H. Hirschmüller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2005, vol. 2, pp. 807–814.
[5] J. Chang and Y. Chen, “Pyramid stereo matching network,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 5410–5418.
[6] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution decomposition for match density estimation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019, pp. 6037–6046.



THE NOVEL SOLUTION APPROACH

Cross-Spectral training for Deep Learning (CSDL)
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Motivation

Color stereo training sets:

• Publicly available

• E.g., Flying Things 3D, Driving, Monka [7]

➢ RGB stereo matching algorithms trainable

[7] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation,”
in Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 4040–4048.
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Motivation

Color stereo training sets:

• Publicly available

• E.g., Flying Things 3D, Driving, Monka [7]

➢ RGB stereo matching algorithms trainable

Cross-spectral stereo training sets:

No data available

↯
How to train cross-spectral stereo matching?

➢ Lack of deep learning-based cross-
spectral disparity estimation algorithms!

[7] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation,”
in Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 4040–4048.
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Fundamentals
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Fundamentals

Conclusion:
• For same setup, only spectral filter 

relevant 

• Further filter simulation possible:

➢ Use RGB data sets

➢ Compose known intensity images

➢ Obtain synthesized cross-spectral 
training set
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Fundamentals

Conclusion:
• For same setup, only spectral filter 

relevant 

• Further filter simulation possible:

➢ Use RGB data sets

➢ Compose known intensity images

➢ Obtain synthesized cross-spectral 
training set

Proposed Cross-Spectral
training for Deep
Learning (CSDL)
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Extraction

↓
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Synthetization

Synthesized channel combinations:
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Noise Modeling

Challenges of practical applications: Noise
• Narrowband spectral filters and limited light sources
➢ Electronic circuit noise

➢ Photon shot noise

➢ Amount of photons
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Random Selection

➢ RGB and synthesized training set of same size



PERFORMANCE ANALYSIS

Evaluation
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Objective Evaluation I

Training: Synthetic FlyingThings3D data set [7] → RGB and generated CSDL images

Evaluation: Natural Middlebury images [8]

Metrics: Bad Matched Pixels (BMP), End-Point Error (EPE)

[7] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation,”
in Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 4040–4048.

[8] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Neˇsi´c, X. Wang, and P. Westling, “Highresolution stereo datasets with subpixel-accurate ground truth,” in Proc. German Conference on Pattern Recognition (GCPR), Sept. 2014, pp. 31–42.
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Objective Evaluation II

[2] O. Zeglazi, M. Rziza, A. Amine, and C. Demonceaux, “Accurate dense stereo matching for road scenes,” in Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2017, pp. 720–724.
[3] S. Mattoccia, F. Tombari, and L. Di Stefano, “Reliable rejection of mismatching candidates for efficient zncc template matching,” in Proc. IEEE International Conference on Image Processing (ICIP), Oct. 2008, pp. 849–852.
[4] H. Hirschmüller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2005, vol. 2, pp. 807–814.
[5] J. Chang and Y. Chen, “Pyramid stereo matching network,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 5410–5418.
[6] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution decomposition for match density estimation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019, pp. 6037–6046.
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Visual Evaluation I

First camera Second camera

CWL: 524 nm CWL: 950 nm
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Visual Evaluation II

Registered image (green ← near-infrared, CSDL-trained PSMNet) Estimated disparity map

CWLs: 950 nm, 524 nm, - Disparity map



AND REFERENCE IMPLEMENTATION

Conclusion
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Conclusion

Fundamentals and 
Applications
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Conclusion

Fundamentals and 
Applications

Prototype system

Proposed training

algorithm

Objective and visual evaluation
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Reference Implementation

CSDL framework :

➢ Cross-Spectral training for Deep Learning (CSDL)

➢ https://gitlab.lms.tf.fau.de/lms/csdl


