

RSANET: Deep Recurrent Scale-aware Network for Crowd Counting

Yujun Xie Yao Lu Shunzhou Wang

Session: ARS-15 -- Image & Video Mid-Level Analysis

Introduction

What is the task of crowd counting?

Introduction

Motivation

Scale Variation

High-Resolution

How to learn effective multi-scale features and resore high-resolution density maps?

Related Works - Network Architecture

	Configuration	ns of CSRNet	
А	В	C	D
in	put(unfixed-reso	lution color ima	ge)
	from	t-end	and an and the second se
	(fine-tuned fr	om VGG-16)	
	conv3	3-64-1	
	conv3	3-64-1	
	max-p	ooling	
	conv3	-128-1	
	conv3	-128-1	
	max-p	ooling	
	conv3	-256-1	
	conv3	-256-1	
	conv3	-256-1	
	max-p	ooling	
	conv3	-512-1	
	conv3	-512-1	
	conv3	-512-1	
bac	k-end (four diffe	erent configuration	ons)
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4
conv3-256-1	conv3-256-2	conv3-256-4	conv3-256-4
conv3-128-1	conv3-128-2	conv3-128-4	conv3-128-4
conv3-64-1	conv3-64-2	conv3-64-4	conv3-64-4
	conv	1-1-1 net/web	

Y. Li, X. Zhang, and D. Chen, "CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes". in CVPR, 2018.

Related works - Scale Variation

X. Jiang, Z. Xiao, B. Zhang, "Crowd counting and density estimation by trellis encoder-decoder networks," in CVPR, 2019.T. Lin , D. Piotr, R. Girshick, "Feature Pyramid Networks for Object Detection," in CVPR, 2016.

M. Shi, Z. Yang, C. Xu, and Q Chen, "Revisiting perspective information for efficient crowd counting," in CVPR, 2019.

Related works - Feature Fusion

concatenation

predict predict predict

element-wise addition

attention-guided fusion

X. Jiang, Z. Xiao, B. Zhang, "Crowd counting and density estimation by trellis encoderdecoder networks," in CVPR, 2019.

T. Lin , D. Piotr, R. Girshick, "Feature Pyramid Networks for Object Detection," in CVPR, 2016.

V. A. Sindagi and V. M. Pateld, "Multi-level bottom-top and top-bottom feature fusion for crowd counting," in ICCV, 2019.

Related works - Feature Fusion

Related works - High Resolution

K, Sun, B. Xiao, D. Liu. "Deep High-Resolution Representation Learning for Human Pose Estimation," in CVPR, 2019.

Contributions

RSANet - a recurrent scale-aware network

- > a coarse-to-fine scheme is introduced to gradually restore the high-resolution feature map;
- > a recurrent module is deployed in feature fusion process to enrich feature representations;
- > a multi-resolution supervision strategy is used for our network.

Our Method - Recurrent scale-aware network

Our Method - Multi-resolution supervision loss

$$L = \sum_{i=1}^{K} \sum_{j=1}^{N} \left\| \left| P_{near}(D(I_j; \theta), k_i) - P_{near}(D_j^{GT}, k_i) \right| \right\|_2^2$$
(5)

where *K* is the number of scales, *N* is the number of images in a batch, $D(I_j; \theta)$ is the estimated density map for training image I_j with parameters θ , D_j^{GT} is the ground truth density map of I_j , P_{ner} is the nearest neighbor upsampling operation to ensure the same scale of two density maps, k_i is the specified output resolution of density map.

Results - Datasets

Congested Crowd

ShanghaiTech Part A: Congestion

Sparse Crowd

482 images

241,677 heads

UCF-QNRF: High-resolution Data

1535 images

1,251,642 heads

ShanghaiTech Part B: Free-view Scenes

716 images

88,488 heads

Results - ShanghaiTech dataset

	part A		part B	
Method	MAE	MSE	MAE	MSE
MCNN [1]	110.2	173.2	26.4	41.3
CSRNet [3]	68.2	115.0	10.6	16.0
SANet [2]	67.0	104.5	8.4	13.6
PACNN [20]	66.3	106.4	8.9	13.5
SFCN [21]	64.8	107.5	7.6	13.0
TEDNet [19]	64.2	109.1	8.2	12.8
Ours(RSANet)	63.5	97.4	8.5	12.6

Results - UCF-QNRF dataset

Method	MAE	MSE
MCNN [1]	277	-
HA-CCN [22]	118.1	180.4
TEDNet [19]	113	188
CAN [18]	107	183
S-DCNet [23]	104.4	176.1
Ours(RSANet)	102.9	181.9

Results - Ablation study

	Configuration	MAE	MSE
(a)	BaseNet	68.2	112.6
(b)	BaseNet+MRS	65.3	104.2
(c)	BaseNet+MRS+ConvLSTM	65.2	104.5
(d)	BaseNet+MRS+ConvGRU	63.5	97.4

Results - Visualization

Conclusion

- Detailed information from low-level feature helps to restore high-resolution density map.
- Recurrent network is an effective way to guide learning process of scales adaptively.
- Task of crowd counting can draw on the experience of other density prediction tasks such as semantic segmentation, pose estimation, etc.

Thank you!

RSANET: Deep Recurrent Scale-aware Network for Crowd Counting Yujun Xie Yao Lu Shunzhou Wang