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Motivation
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• Deep neural networks (DNNs) have shown great successes for the 

data that have similar distributions to the training data (source).
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Motivation
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• But the DNN model sufficiently trained on a source domain often 

doesn’t work well on some target domains.

Street View House Numbers (SVHN)MNIST
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Motivation

4

• Domain Adaptation (DA) addresses this domain shift by adapting a 

model trained on a source domain to a target domain.  

< target domain >< source domain >

Discrepancy

Discrepancy?
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Key Idea
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• We presume that domain shift occurs when target samples are out of 

the source domain distribution (D𝑆). 

Out-of-distribution from D𝑆

Out-of-distribution from D𝑆
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Key Idea
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• The predictive uncertainty of the model (model uncertainty) should be 

measured ‘high’ at the target samples outside D𝑆. 

High 

Uncertainty

High 

Uncertainty
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Key Idea
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• If the model uncertainty can be quantified and reduced properly, we 

expect a DNN model learns domain-invariant feature representations.

(a) Source only

(b) Detect 

uncertainty

(c) Minimize 

uncertainty

(d) Adapted
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Unsupervised Domain Adaptation
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• Unsupervised Domain Adaptation (UDA) assumes: 

① Fully-labeled source data (𝑋𝑠, 𝑌𝑠) ~ D𝑆
② Unlabeled target data 𝑋𝑡 ~ D𝑇

③ Both domains share a label space : 𝑦 ∈ {1,… , 𝐾 }

• The goal of UDA is to build a classifier that correctly predicts 𝑦𝑡 of a 

new target sample 𝑥𝑡 drawn from D𝑇.

Target ~ D𝑇Source ~ D𝑆
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Theoretical Insight : Ben-David et al.
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• Ben-David et al. [1] has proposed a theory that upperbounds the 

expected target error 𝜖𝑇 ℎ as follows:

𝜖𝑇 ℎ ≤ 𝜖𝑆 ℎ +
1

2
𝑑H△H D𝑆,D𝑇 + 𝜆,            for all ℎ ∈ H

𝜖𝑆 ℎ : the expected source error

𝑑H△H : divergence in the symmetric difference hypothesis space

𝜆 : the combined error of the ideal joint hypothesis (constant)

H : a hypothesis space

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method
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• From [1], 𝑑H△H is defined by

𝑑H△H D𝑆,D𝑇 ≔2 sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑆
1 ℎ 𝑥 ≠ ℎ′ 𝑥 − 𝔼𝑥~D𝑇

1 ℎ 𝑥 ≠ ℎ′ 𝑥

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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• From [1], 𝑑H△H is defined by

𝑑H△H D𝑆,D𝑇 ≔2 sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑆
1 ℎ 𝑥 ≠ ℎ′ 𝑥 − 𝔼𝑥~D𝑇

1 ℎ 𝑥 ≠ ℎ′ 𝑥

• We simplify 𝑑H△H to incorporate our idea: 

If ℎ and ℎ′ can correctly classify source samples, they will agree on source 

samples. This enables us to neglect the term

𝔼𝑥~D𝑆
1 ℎ 𝑥 ≠ ℎ′ 𝑥 .

①

①

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010

→ small (≈ 0)
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Derivation of Our Method
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• From [1], 𝑑H△H is defined by

𝑑H△H D𝑆,D𝑇 ≔2 sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑆
1 ℎ 𝑥 ≠ ℎ′ 𝑥 − 𝔼𝑥~D𝑇

1 ℎ 𝑥 ≠ ℎ′ 𝑥

• We simplify 𝑑H△H to incorporate our idea: 

If ℎ and ℎ′ can correctly classify source samples, they will agree on source 

samples. This enables us to neglect the term ①.

For binary classification ℎ 𝑥 ∈ {0,1},

1 ℎ 𝑥 ≠ ℎ′ 𝑥 = ℎ 𝑥 − ℎ′ 𝑥
2
.

①

①

②

②

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method
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• Hence,

𝑑H△H D𝑆,D𝑇 ≈ 2 sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑇
ℎ 𝑥 − ℎ′ 𝑥

2
.

• We argue, by narrowing our attention to the set of ℎ that minimizes 𝜖𝑆, 

we can achieve the same goal as the supremum of expectation:

sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑇
ℎ 𝑥 − ℎ′ 𝑥

2
.
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Derivation of Our Method
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• Hence,

𝑑H△H D𝑆,D𝑇 ≈ 2 sup
ℎ,ℎ′∈H

𝔼𝑥~D𝑇
ℎ 𝑥 − ℎ′ 𝑥

2
.

• We can define DH ≔ 𝑃(ℎ|𝑋𝑠, 𝑌𝑠) and replace the supremum with the 

expectation to obtain

𝑑H△H D𝑆,D𝑇 ≈ 2 𝔼ℎ,ℎ′~DH
𝔼𝑥~D𝑇

ℎ 𝑥 − ℎ′ 𝑥
2

= 4 𝔼𝑥~D𝑇
𝔼ℎ~DH

ℎ 𝑥 − 𝔼ℎ~DH
[ℎ 𝑥 ]

2
.
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Derivation of Our Method
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2
.

• We can define DH ≔ 𝑃(ℎ|𝑋𝑠, 𝑌𝑠) and replace the supremum with the 

expectation to obtain
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ℎ 𝑥 − ℎ′ 𝑥
2

= 4 𝔼𝑥~D𝑇
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ℎ 𝑥 − 𝔼ℎ~DH
[ℎ 𝑥 ]

2
.

“the predictive variance of a hypothesis (model uncertainty)”
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Model Preliminaries
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• We formulate the UDA problem under the shared latent space 

framework.

F C predictionssample 𝑥
𝐹 𝑥

feature extractor task-specific classifier

𝐶(𝐹 𝑥 )
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Proposed Method (MUDA)
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• From the previous derivation, the problem is

minimizing 𝑑H△H → minimizing the model uncertainty 

on target samples. 

• Now our objectives are

① to find F that minimizes the model uncertainty :

min
𝐹

𝔼𝑥~D𝑇
𝔼ℎ~DH

ℎ 𝑥 − 𝔼ℎ~DH
[ℎ 𝑥 ]

2

② to keep minimizing the source error 𝜖𝑆 :

min
𝐹,𝐶

𝜖𝑆(ℎ)
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Proposed Method (MUDA)
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① to find F that minimizes the model uncertainty :

min
𝐹

𝔼𝑥~D𝑇
𝔼ℎ~DH

ℎ 𝑥 − 𝔼ℎ~DH
[ℎ 𝑥 ]

2

We perform M stochastic forward passes via MC dropout [2] to obtain 

{ ො𝑦1, … , ො𝑦𝑀 } that lead to the estimation :

ො𝜎𝑀𝐶
2 = diag(

1

𝑀
෍

𝑚=1

𝑀

ො𝑦𝑚 ො𝑦𝑚
T − ത𝑦𝑀𝐶 ത𝑦𝑀𝐶

T )

where ത𝑦𝑀𝐶 =
1

𝑀
σ𝑚=1
𝑀 ො𝑦𝑚

➔ Model uncertainty loss  L𝑑𝑖𝑣 D𝑇 ≔ ‖ො𝜎𝑀𝐶‖

[2] Y. Gal et al., “Dropout as a Bayesian approximation: Representing model uncertainty in deep learning”, In ICML 2016
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Proposed Method (MUDA)
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② to keep minimizing the source error 𝜖𝑆 :

min
𝐹,𝐶

𝜖𝑆(ℎ)

We use cross entropy loss for classification.

➔ Classification loss  L𝑐𝑙𝑠 D𝑆 ≔ −𝔼(𝑥𝑠,𝑦𝑠)~D𝑆
𝑦𝑠
T log𝐶(𝐹 𝑥𝑠 )



Model Uncertainty for Unsupervised Domain AdaptationJoonHo Lee, Gyemin Lee

Proposed Method (MUDA)
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Proof of Concept
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Proof of Concept
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• Snapshots from the previous video clip
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Results: Digits & Traffic Signs datasets
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* Transductive setting

Table 1. Average accuracy from 10 random experiments

• Small sized images : 28 x 28, 32 x 32, or 40 x 40

• Three conv layers for F & two FC layers for C are used.

“MUDA shows superior performances to others”

MNIST 

SVHN 

USPS 

SYNSIG

GTSRB 
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Qualitative Analysis

25

• Red & blue dots represent the source & target samples, respectively (a, b). 

• SYNSIG (source) to GTSRB (target) setting is analyzed.

• The embeddings of the learned features are depicted by t-SNE.

• MUDA significantly reduces divergence between domains and makes 
target samples more discriminative on the feature space. 
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Results: Office-31 dataset
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Table 2. Average accuracy from 10 random experiments

“MUDA performs best or second best in all settings.”

• Large sized images : 224 x 224 (4,562 images with 31 classes)

• ResNet-50 is employed for F & three FC layers are used for C.
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Results: VisDA-17 dataset (preliminary)
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• 152K synthetic images (source) to 55K real images (target) with 12 categories

• ResNet-101 is employed for F & three FC layers are used for C.

Source Target

Table 3. Per-category average accuracy from 10 random experiments

* Long et al., In ICML, 2015

*
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Qualitative Analysis (preliminary)
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• The saliency map for a prediction is analyzed using Grad-CAM.

• MUDA makes the model highlight the semantically meaningful regions 

properly thus generate robust decision boundary. 

Source

Target

Source-only

MUDA

* The most discriminative 

regions are emphasized 

by deep red color, and the 

least relevant regions by 

deep blue color.
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Conclusion
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• We have presented that MUDA outperforms state-of-the-art 

methods via novel interpretation of the divergence between 

domains using the predictive uncertainty of model.

• We also devised an efficient method for computing model 

uncertainty using MC dropout.

• Model uncertainty is a useful surrogate to tackle domain shift.   

By minimizing it on the feature space, we can shrink the classifier 

hypothesis to contain only consistent classifiers on target domain.
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