Model Uncertainty for Unsupervised Domain Adaptation

JoonHo Lee^{1,2}

Gyemin Lee¹

¹Seoul National University of Science and Technology ²Samsung SDS Artificial Intelligence Research Center

Motivation

• Deep neural networks (DNNs) have shown great successes for the data that have similar distributions to the training data (*source*).

Motivation

• But the DNN model sufficiently trained on a source domain often doesn't work well on some *target* domains.

Motivation

• Domain Adaptation (DA) addresses this *domain shift* by adapting a model trained on a source domain to a target domain.

• We presume that domain shift occurs when target samples are out of the source domain distribution (\mathcal{D}_S) .

• The predictive uncertainty of the model (*model uncertainty*) should be measured 'high' at the target samples outside D_S .

• If the model uncertainty can be quantified and reduced properly, we expect a DNN model learns domain-invariant feature representations.

Unsupervised Domain Adaptation

- Unsupervised Domain Adaptation (UDA) assumes:
 - ① Fully-labeled source data $(X_s, Y_s) \sim \mathcal{D}_s$
 - ② Unlabeled target data $X_t \sim \mathcal{D}_T$
 - 3 Both domains share a label space : $y \in \{1, ..., K\}$
- The goal of UDA is to build a classifier that correctly predicts y_t of a new target sample x_t drawn from \mathcal{D}_T .

Theoretical Insight : Ben-David et al.

• Ben-David et al. [1] has proposed a theory that upperbounds the expected target error $\epsilon_T(h)$ as follows:

$$\epsilon_T(h) \leq \epsilon_S(h) + \frac{1}{2} d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda, \quad \text{for all } h \in \mathcal{H}$$

 $\epsilon_{S}(h)$: the expected source error

 $d_{\mathcal{H} \bigtriangleup \mathcal{H}}$: divergence in the symmetric difference hypothesis space

 λ : the combined error of the ideal joint hypothesis (constant)

 \mathcal{H} : a hypothesis space

Theoretical Insight : Ben-David et al.

• Ben-David et al. [1] has proposed a theory that upperbounds the expected target error $\epsilon_T(h)$ as follows:

$$\epsilon_T(h) \leq \epsilon_S(h) + \frac{1}{2} d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda,$$

for all $h \in \mathcal{H}$

 $\epsilon_{S}(h)$: the expected source error

 $d_{\mathcal{H} \triangle \mathcal{H}}$: divergence in the symmetric difference hypothesis space

 λ : the combined error of the ideal joint hypothesis (constant)

 \mathcal{H} : a hypothesis space

- From [1], $d_{\mathcal{H}\!\!\wedge\!\mathcal{H}}$ is defined by

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \coloneqq 2 \sup_{h, h' \in \mathcal{H}} \left| \mathbb{E}_{x \sim \mathcal{D}_{S}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right] - \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right] \right|$$

• From [1], $d_{\mathcal{H} \bigtriangleup \mathcal{H}}$ is defined by

 $d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \coloneqq 2 \sup_{h, h' \in \mathcal{H}} \left| \frac{\mathbb{E}_{x \sim \mathcal{D}_{S}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right]}{\mathbb{1}} - \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right] \right|$

- We simplify $d_{\mathcal{H} \bigtriangleup \mathcal{H}}$ to incorporate our idea:
- If h and h' can correctly classify source samples, they will agree on source samples. This enables us to neglect the term

$$\mathbb{E}_{x \sim \mathcal{D}_{S}}[1(h(x) \neq h'(x))]. \qquad \rightarrow \text{small } (\approx 0)$$

• From [1], $d_{\mathcal{H}\!\!\wedge\!\mathcal{H}}$ is defined by

 $d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \coloneqq 2 \sup_{h, h' \in \mathcal{H}} \left| \frac{\mathbb{E}_{x \sim \mathcal{D}_{S}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right]}{\mathbb{1}} - \frac{\mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\mathbb{1} \left(h(x) \neq h'(x) \right) \right]}{\mathbb{2}} \right|$

- We simplify $d_{\mathcal{H} \bigtriangleup \mathcal{H}}$ to incorporate our idea:
- (1) If h and h' can correctly classify source samples, they will agree on source samples. This enables us to neglect the term (1).
- ② For binary classification $h(x) \in \{0,1\}$, $1(h(x) \neq h'(x)) = (h(x) - h'(x))^2$.

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates

Derivation of Our Method

• Hence,

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) \approx 2 \sup_{h,h' \in \mathcal{H}} \mathbb{E}_{x \sim \mathcal{D}_T} \left[\left(h(x) - h'(x) \right)^2 \right].$$

• We argue, by narrowing our attention to the set of h that minimizes ϵ_s , we can achieve the same goal as the supremum of expectation:

$$\sup_{h,h'\in\mathcal{H}}\mathbb{E}_{x\sim\mathcal{D}_T}\Big[\Big(h(x)-h'(x)\Big)^2\Big].$$

• Hence,

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \approx 2 \sup_{h, h' \in \mathcal{H}} \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\left(h(x) - h'(x) \right)^{2} \right].$$

• We can define $\mathcal{D}_{\mathcal{H}} \coloneqq P(h|X_s, Y_s)$ and replace the supremum with the expectation to obtain

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \approx 2 \mathbb{E}_{h, h' \sim \mathcal{D}_{\mathcal{H}}} \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\left(h(x) - h'(x) \right)^{2} \right]$$
$$= 4 \mathbb{E}_{x \sim \mathcal{D}_{T}} \mathbb{E}_{h \sim \mathcal{D}_{\mathcal{H}}} \left[\left(h(x) - \mathbb{E}_{h \sim \mathcal{D}_{\mathcal{H}}} [h(x)] \right)^{2} \right].$$

• Hence,

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \approx 2 \sup_{h, h' \in \mathcal{H}} \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\left(h(x) - h'(x) \right)^{2} \right].$$

• We can define $\mathcal{D}_{\mathcal{H}} \coloneqq P(h|X_s, Y_s)$ and replace the supremum with the expectation to obtain

$$d_{\mathcal{H} \triangle \mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) \approx 2 \mathbb{E}_{h, h' \sim \mathcal{D}_{\mathcal{H}}} \mathbb{E}_{x \sim \mathcal{D}_{T}} \left[\left(h(x) - h'(x) \right)^{2} \right]$$
$$= 4 \mathbb{E}_{x \sim \mathcal{D}_{T}} \mathbb{E}_{h \sim \mathcal{D}_{\mathcal{H}}} \left[\left(h(x) - \mathbb{E}_{h \sim \mathcal{D}_{\mathcal{H}}} [h(x)] \right)^{2} \right]$$

"the predictive variance of a hypothesis (model uncertainty)"

Model Preliminaries

• We formulate the UDA problem under the shared latent space framework.

Proposed Method (MUDA)

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates

- From the previous derivation, the problem is minimizing $d_{\mathcal{H} \triangle \mathcal{H}} \rightarrow$ minimizing the model uncertainty on target samples.
- Now our objectives are

1 to find *F* that minimizes the model uncertainty : $\min_{F} \mathbb{E}_{x \sim \mathcal{D}_{T}} \mathbb{E}_{h \sim \mathcal{D}_{H}} \Big[\Big(h(x) - \mathbb{E}_{h \sim \mathcal{D}_{H}} [h(x)] \Big)^{2} \Big]$

(2) to keep minimizing the source error ϵ_S :

 $\min_{F,C} \epsilon_S(h)$

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates

1 to find *F* that minimizes the model uncertainty :

$$\min_{F} \mathbb{E}_{x \sim \mathcal{D}_{T}} \mathbb{E}_{h \sim \mathcal{D}_{H}} \left[\left(h(x) - \mathbb{E}_{h \sim \mathcal{D}_{H}} [h(x)] \right)^{2} \right]$$

We perform *M* stochastic forward passes via MC dropout [2] to obtain $\{\hat{y}_1, \dots, \hat{y}_M\}$ that lead to the estimation :

$$\hat{\sigma}_{MC}^{2} = \text{diag}(\frac{1}{M}\sum_{m=1}^{M}\hat{y}_{m}\,\hat{y}_{m}^{\mathrm{T}} - \bar{y}_{MC}\bar{y}_{MC}^{\mathrm{T}})$$

where $\bar{y}_{MC} = \frac{1}{M}\sum_{m=1}^{M}\hat{y}_{m}$

→ Model uncertainty loss $\mathcal{L}_{div}(\mathcal{D}_T) \coloneqq \|\hat{\sigma}_{MC}\|$

[2] Y. Gal et al., "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning", In ICML 2016

Proposed Method (MUDA)

(2) to keep minimizing the source error ϵ_S :

We use cross entropy loss for classification.

→ Classification loss $\mathcal{L}_{cls}(\mathcal{D}_S) \coloneqq -\mathbb{E}_{(x_s, y_s) \sim \mathcal{D}_S}[y_s^T \log \mathcal{C}(F(x_s))]$

 $\min_{F,C} \epsilon_S(h)$

Algorithm 1 Learning algorithm for MUDA

Input: Source domain data and the corresponding labels (X_s, Y_s) sampled from \mathcal{D}_S and target domain data X_t sampled from \mathcal{D}_T without labels

Output: Trained weights of feature extractor network F, task-specific classifier network C

- 1: Learning initial weights of C and F with \mathcal{L}_{cls} (13)
- 2: Enable Monte Carlo dropout of C and F if available
- 3: for each training iteration do
- 4: Sample data from \mathcal{D}_S and \mathcal{D}_T
- 5: Update C with \mathcal{L}_{cls} (14)
- 6: Update F with $\mathcal{L}_{cls} + \mathcal{L}_{div}$ (15)
- 7: **end for**

Proof of Concept

JoonHo Lee, Gyemin Lee

Proof of Concept

Snapshots from the previous video clip

Results: Digits & Traffic Signs datasets

	0 1 0	Table 1. Average accuracy from 10 random experiments								
MINIST	1 / 1 0	SOURCE	SVHN	SYNSIG	MNIST	MNIST*	USPS			
SVHN	1 7728	TARGET	MNIST	GTSRB	USPS	USPS*	MNIST			
	L L 600	Source Only	67.1	85.1	76.7	79.4	63.4			
USPS	41022	DANN[2]	71.1	88.7	77.1 ^{1.8}	85.1	$73.0^{0.2}$			
	/ / 0 ~	ADDA[4]	$76.0^{1.8}$	-	$89.4^{0.2}$	-	$90.1^{0.8}$			
SYNSIG GTSRB	A - 20	MCDDA[7]	$96.2^{0.4}$	94.4 ^{0.3}	$94.2^{0.7}$	96.5 ^{0.3}	94.1 ^{0.3}			
		CADA[11]	$90.9^{0.2}$	-	96.4 ^{0.1}	-	97.0 ^{0.1}			
		GPDA[8]	$98.2^{0.1}$	$96.2^{0.2}$	$96.5^{0.2}$	$98.1^{0.1}$	96.4 ^{0.1}			
		Ours	99.1 ^{0.4}	98.6 ^{0.5}	97.9 ^{0.2}	98.5 ^{0.1}	96.7 ^{0.4}			
		-								

"MUDA shows superior performances to others"

- Small sized images : 28 x 28, 32 x 32, or 40 x 40
- Three conv layers for *F* & two FC layers for *C* are used.

JoonHo Lee, Gyemin Lee

Model Uncertainty for Unsupervised Domain Adaptation

* Transductive setting

Qualitative Analysis

- The embeddings of the learned features are depicted by t-SNE.
- MUDA significantly reduces divergence between domains and makes target samples more discriminative on the feature space.

- Red & blue dots represent the source & target samples, respectively (a, b).
- SYNSIG (source) to GTSRB (target) setting is analyzed.

JoonHo Lee, Gyemin Lee

Results: Office-31 dataset

Amazon (A)

DSLR (D)

Webcam (W)

Table 2. Average accuracy from 10 random experiments

Ours	88.2	98.7	99.8	90.0	71.2	69.0	86.1
GPDA [8]	83.9	97.3	100.0	85.5	72.3	68.8	84.6
MADA [19]	90.0	97.4	99.6	87.8	70.3	66.4	85. <i>3</i>
JAN [18]	85.4	97.4	<i>99.8</i>	84.7	68.6	70.0	84.3
ADDA [4]	86.2	96.2	98.4	77.8	69.5	68.9	82.8
DANN [2]	82.0	96.9	99.1	79.7	68.2	67.4	82.2
Source Only	68.4	96.7	99.3	68.9	62.5	60.7	76.1
PROTOCOL	A→W	D→W	W→D	A→D	D→A	W→A	Avg.

"MUDA performs best or second best in all settings."

- Large sized images : 224 x 224 (4,562 images with 31 classes)
- ResNet-50 is employed for F & three FC layers are used for C.

JoonHo Lee, Gyemin Lee

Table 3. Per-category average accuracy from 10 random experiments

Method	plane	bicycle	bus	car	horse	knife	mcycle	person	plant	sktboard	train	truck	Average
Source Only	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
DAN [*]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [2]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
MCDDA [7]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
GPDA [8]	83.0	74.3	80.4	66.0	87.6	75.3	83.8	73.1	90.1	57.3	80.2	37.9	73.3
Ours	92.2	79.5	80.8	70.2	91.9	78.5	90.8	81.9	93.0	62.5	88.7	31.9	78.5

Source

Target

- 152K synthetic images (source) to 55K real images (target) with 12 categories
- ResNet-101 is employed for F & three FC layers are used for C.

JoonHo Lee, Gyemin Lee

Model Uncertainty for Unsupervised Domain Adaptation

* Long et al., *In ICML*, 2015

Qualitative Analysis (preliminary)

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates

- The saliency map for a prediction is analyzed using Grad-CAM.
- MUDA makes the model highlight the semantically meaningful regions properly thus generate robust decision boundary.

* The most discriminative regions are emphasized by deep red color, and the least relevant regions by deep blue color.

JoonHo Lee, Gyemin Lee

Conclusion

- We have presented that MUDA outperforms state-of-the-art methods via novel interpretation of the divergence between domains using the predictive uncertainty of model.
- We also devised an efficient method for computing model uncertainty using MC dropout.
- Model uncertainty is a useful surrogate to tackle domain shift. By minimizing it on the feature space, we can shrink the classifier hypothesis to contain only consistent classifiers on target domain.

Thanks for your attention!

JoonHo Lee, Gyemin Lee

{joonholee,gyemin}
@seoultech.ac.kr

IEEE ICIP 2020 Presentation