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* Deep neural networks (DNNs) have shown great successes for the
data that have similar distributions to the training data (source).

> 99%

Class: 1
MNIST

JoonHo Lee, Gyemin Lee Model Uncertainty for Unsupervised Domain Adaptation



g  [EEEInternational Conference
on Image Processing
M ] | ] 25-28 October 2020, United Arab Emirates
otivation |

« But the DNN model sufficiently trained on a source domain often
doesn’t work well on some target domains.

< 30%

Class: 1
MNIST Street View House Numbers (SVHN)
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Motivation @

 Domalin Adaptation (DA) addresses this domain shift by adapting a
model trained on a source domain to a target domain.

Discrepancy

B Discrepancy

< source domain > < target domain >
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Key Idea @

* We presume that domain shift occurs when target samples are out of
the source domain distribution (@s).
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Key Idea W

« The predictive uncertainty of the model (model uncertainty) should be
measured ‘high’ at the target samples outside @.

—————
——————

High

4
High )
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Key Idea @

« If the model uncertainty can be quantified and reduced properly, we
expect a DNN model learns domain-invariant feature representations.

>, (b) Detect =25~
/__ uncertainty O}

-
——————
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Unsupervised Domain Adaptation L

« Unsupervised Domain Adaptation (UDA) assumes:

@O Fully-labeled source data (X, Y;) ~ @Os
2 Unlabeled target data X; ~ Oy
® Both domains share a label space :y € {1,...,K }

« The goal of UDA is to build a classifier that correctly predicts y; of a
new target sample x; drawn from @;.

Source ~ Dy Target ~ O

o ©

o
W\
0990

OO
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Theoretical Insight : Ben-David et al. o

* Ben-David et al. [1] has proposed a theory that upperbounds the
expected target error e (h) as follows:

er(h) < es(R) +5 dyp3(Ds, Dp) + 1. forall h € 3

es(h) : the expected source error

dgra g divergence in the symmetric difference hypothesis space
A : the combined error of the ideal joint hypothesis (constant)

J{. a hypothesis space

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method !

* From [1], d¢x ¢r1S defined by

dg/n3/(Ds, Dr) =2 sup |E;.o [1(h(x) # h'(x))] = Exeqp [1(A(x) # A (0))]]

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method !

* From [1], d¢x ¢r1S defined by

dg/n3/(Ds, Dr) =2 sup | [1(h(x) # h'(x))] = Exeqp [1(A(x) # A (0))]]
N E @

* We simplify d 4\ ¢, t0 Incorporate our idea:

(1) If h and h' can correctly classify source samples, they will agree on source
samples. This enables us to neglect the term

Ex-po[1(R(x) # h'(x))]. > small (= 0)

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method !

* From [1], d¢x ¢r1S defined by

dgn3/(Ds, Or) =2 sup |E,.pl(h(x) # h'(x))]| — Ex-p,.[1(R(x) # h'(x))]|
h,h'e @ @

* We simplify d 4\ ¢, t0 Incorporate our idea:

(1) If h and h' can correctly classify source samples, they will agree on source
samples. This enables us to neglect the term @.

(2) For binary classification h(x) € {0,1},
1(h(x) % h'(x)) = (h(x) = K’ ()",

[1] S. Ben-David et al., “A theory of learning from different domains”, Machine Learning, vol. 79(1-2), pp.151-175, 2010
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Derivation of Our Method (O —

* Hence,

dyp (D5, D) = 2 sup Eroqp, |(h(x) — '())].
hh'eH

« We argue, by narrowing our attention to the set of A that minimizes e,
we can achieve the same goal as the supremum of expectation:

o | (h(0) = ()7
SuP By |(hGo) = 1 ()]
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Derivation of Our Method (O —

* Hence,

dyp (D5, D) = 2 sup Eroqp, |(h(x) — '())].
hh'eH

* We can define ©4/:= P(h|X,, Ys) and replace the supremum with the
expectation to obtain

dyin3(Ds, Dr) = 2 By, By |(hG0) — ' ()]

—4 IEx~Q)TIEh~(D}[[(h(x) — Eh~@]_[{h(x)])2]-
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Derivation of Our Method (O —

* Hence,

dyp (D5, D) = 2 sup Eroqp, |(h(x) — '())].
hh'eH

* We can define ©4/:= P(h|X,, Ys) and replace the supremum with the
expectation to obtain

dyin3(Ds, Dr) = 2 By, By |(hG0) — ' ()]

—4 IEx~@TIEh~(D7[[(h(x) — Eh~@ﬂ{h(x)])2]-

“the predictive variance of a hypothesis (model uncertainty)”
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Model Preliminaries @

« We formulate the UDA problem under the shared latent space
framework.

feature extractor task-specific classifier

sample x — > predictions

F(x) C(F(x))

v
v
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Proposed Method (MUDA) L

* From the previous derivation, the problem is
minimizing d ¢4/, ¢ = mMinimizing the model uncertainty

on target samples.
* Now our objectives are
(D to find F that minimizes the model uncertainty :

min B, En-,, | (R0 — B I (0] |

(2) to keep minimizing the source error ¢

min €5(h)
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Proposed Method (MUDA) el

(D to find F that minimizes the model uncertainty :
2
mFin IEx~@TIEh~@j{[(h(x) — Eh~@ﬂ[h(X)]) ]

We perform M stochastic forward passes via MC dropout [2] to obtain
{91, ..., ¥y } that lead to the estimation :

M
. 1 R o
0-12\/16 = d'ag(ﬁ 2 Pm Im — yMCyI\T/}C)
m=1

_ . 1 M ~
where YMmc = M m=1Ym

= Model uncertainty 10ss L, (D7) = |Gyl

[2] Y. Gal et al., “Dropout as a Bayesian approximation: Representing model uncertainty in deep learning”, In ICML 2016
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Proposed Method (MUDA) el

(2) to keep minimizing the source error ¢
min eq(h
nin €s(h)

We use cross entropy loss for classification.

> Classification 10ss L45(Ds) = —Ex,y)~0q[ya 10gC (F (x5))]
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Proposed Method (MUDA)

Algorithm 1 Learning algorithm for MUDA

Input: Source domain data and the corresponding labels
(Xs.Ys) sampled from Dg and target domain data X; sam-
pled from D without labels

Output: Trained weights of feature extractor network F,
task-specific classifier network C

I: Learning initial weights of €' and F' with L4 (13)
2: Enable Monte Carlo dropout of C' and F' if available
3: for each training iteration do

4: Sample data from Dg and D

5 Update C' with L, (14)

6 Update F' with L.;s + Lgiv (15)

7: end for

Ci

IEEE International Conference
on Image Processing
25-28 October 2020, United Arab Emirates

JoonHo Lee, Gyemin Lee

Model Uncertainty for Unsupervised Domain Adaptation



IEEE International Conference
on Image Processing
25-28 October 2020, United Arab Emirates

Proof of Concept @

Source-only model is ready.
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* Snapshots from the previous video clip

(a) Source-only (b) Ours (¢) Ours (MC dropout)
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Table 1. Average accuracy from 10 random experiments

MNIST SOURCE __SVIN __SYNSIG __MNIST _MNIST® _USPS
SVHN TARGET _ MNIST _ GISRB __ USPS __ USPS* _ MNIST
Source Only 67.1 85.1 76.7 79.4 63.4
LSPS DANN[2] 711 887  77.1L% 85.1 73.07-2
ADDA[4]  76.018 ] 89.40-2 ] 90.10-8
MCDDA[7] 96204 94403 04207 05503 04,103
SYNSIG CADA[11]  90.99-2 - 96.40-1 - 97.00-1
GPDA[8] 98201 96202 96502 98]0l 96401
GTSRB Ours 99.104  08.605  97.902 08501 06704

“MUDA shows superior performances to others”

« Small sized images : 28 x 28, 32 x 32, or 40 x 40

» Three conv layers for F & two FC layers for C are used.

* Transductive setting

JoonHo Lee, Gyemin Lee
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Qualitative Analysis ©

« The embeddings of the learned features are depicted by t-SNE.

 MUDA significantly reduces divergence between domains and makes
target samples more discriminative on the feature space.

o
W «®

(a) Before (by domain) (b) After (by domain) (c) Before (by class) (d) After (by class)

* Red & blue dots represent the source & target samples, respectively (a, b).
« SYNSIG (source) to GTSRB (target) setting is analyzed.
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Results: Office-31 dataset !

Amazon (A) Table 2. Average accuracy from 10 random experiments

=0
- 3 - PROTOCOL | A=W D-W W=D A-D D-A W-=A| Avg.
Source Only | 68.4 96.7 00.3 68.9 62.5 60.7 76.1

DANN [2] 82.0 969  99.1 797 682 674 | 822
ADDA [4] 86.2 96.2 984 778 695 689 | 828

DSLR (D)

JAN [18] 8.4 974 998 847 686 T70.0 | 843

Webcam (W) MADA [19] | 90.0 974 996 878 703 664 | 853
" W F 1 GPDA [8] 83.9 973 100.0 855 723 688 84.6

4 . “ y Ours 88.2 987 998 90.0 7.2 69.0 | 86.1

“MUDA performs best or second best in all settings.”

 Large sized images : 224 x 224 (4,562 images with 31 classes)
* ResNet-50 is employed for F & three FC layers are used for C.
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Results: VISDA-17 dataset (preliminary) @

Table 3. Per-category average accuracy from 10 random experiments

Method plane | bicycle | bus car horse | knife | mcycle | person | plant | sktboard | train | truck | Average
Source Only 55.1 53.3 61.9 | 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN [ * ] 87.1 63.0 76.5 | 42.0 | 90.3 42.9 85.9 53.1 49.7 36.3 85.8 | 20.7 61.1
DANN [2] 81.9 77.7 82.8 | 443 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCDDA [7] 87.0 60.9 83.7 | 640 | 88.9 79.6 84.7 76.9 88.6 40.3 83.0 | 25.8 71.9
GPDA [8] 83.0 74.3 80.4 | 66.0 | 87.6 75.3 83.8 73.1 90.1 57.3 80.2 | 37.9 73.3

Ours 92.2 79.5 80.8 | 70.2 | 91.9 78.5 90.8 81.9 93.0 62.5 88.7 | 31.9 78.5

Source Target

« 152K synthetic images (source) to 55K real images (target) with 12 categories
* ResNet-101 is employed for F & three FC layers are used for C. * Long et al., In ICML, 2015
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Qualitative Analysis (preliminary) !

« The saliency map for a prediction is analyzed using Grad-CAM.

« MUDA makes the model highlight the semantically meaningful regions
properly thus generate robust decision boundary.

Source
Target
1 3 | Vag. o BT 5 ’-“ * The most discriminative
Source-only , - B A P regions are emphasized
by deep red color, and the
» least relevant regions by
MUDA

% - deep blue color.
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* We have presented that MUDA outperforms state-of-the-art
methods via novel interpretation of the divergence between
domains using the predictive uncertainty of model.

* We also devised an efficient method for computing model
uncertainty using MC dropout.

* Model uncertainty is a useful surrogate to tackle domain shift.
By minimizing it on the feature space, we can shrink the classifier
hypothesis to contain only consistent classifiers on target domain.
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