

Session: Sparse and Low Rank Models

One-Shot Layer-Wise Accuracy Approximation for Layer Pruning

Sara Elkerdawy⁽¹⁾, Mostafa Elhoushi⁽²⁾, Abhineet Singh⁽¹⁾, Hong Zhang⁽¹⁾, Nilanjan Ray⁽¹⁾

Department of Computing Science, University of Alberta
 Toronto Heterogeneous Compilers Lab, Huawei

Motivation

- Deep neural networks (DNN) are one of the state-of-the-art methods for a variety of prediction and supervised learning tasks.
- Because DNN models can be large, inference becomes computationally expensive. Embedded and mobile devices that are resource constrained may not be able to effectively use DNNs trained for powerful high-end GPU environment.

Model Pruning

Related work

- Weights pruning [1,2,3]
 - Speedup requires special backend library
- Hardware-agnostic filter pruning [4,5,6]
 - The number of parameters or FLOPs do not correlate strongly with latency
- Hardware-aware filter pruning [8,9,10]

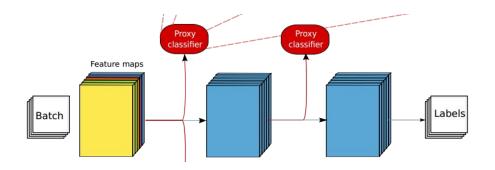
- [1] Han, Song, et al. "Learning both weights and connections for efficient neural network." NeurIPS 2015.
- [2] Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning Sparse Neural Networks through L0 Regularization." ICLR 2018.
- [3] Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." ICLR 2019.
- [4] Li, Hao, et al. "Pruning filters for efficient convnets." ICLR (2017).
- [5] Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." ICCV (2017)
- [6] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." CVPR (2019)
- [7] van Werkhoven, Ben. "Kernel Tuner: A search-optimizing GPU code auto-tuner." Future Generation Computer Systems 90 (2019)
- [8] Yang, Tien-Ju, et al. "Netadapt: Platform-aware neural network adaptation for mobile applications." ECCV (2018).
- [9] He, Yihui, et al. "Amc: Automl for model compression and acceleration on mobile devices." ECCV (2018)
- [10] Yang, Haichuan, Yuhao Zhu, and Ji Liu. "Ecc: Platform-independent energy-constrained deep neural network compression via a bilinear regression model." CVPR (2019).

Filter Pruning Limitations

- The range of attainable latency reduction is limited by the depth of the model.
 - Filter pruning, in general, is able to achieve slimmer models
- Resource consumption (e.g latency) modeling can take days to generate data measurements per hardware and architecture specially on low-end hardware platforms.

One-Shot Layer-Wise Accuracy Approximation for Layer Pruning

- Proxy classifiers after each layer →
 Accuracy up to this layer.
- How to calculate layer-wise accuracy efficiently without the need for re-training?
 - We adopt weights imprinting
 - Motivated by few-shot learning work[11, 12]



Weights Imprinting

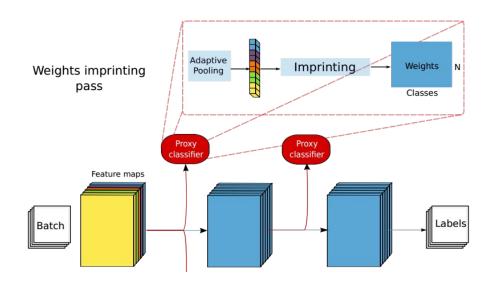
- Classification weights for the *i*th layer W_i
- Weight for each class c can be represented as the average of embeddings for all samples belonging to that class, each sample with embedding E;

$$W_i[:,c] = \frac{1}{N_c} \sum_{j=1}^{N} I_{[c_j = =c]} E_j$$

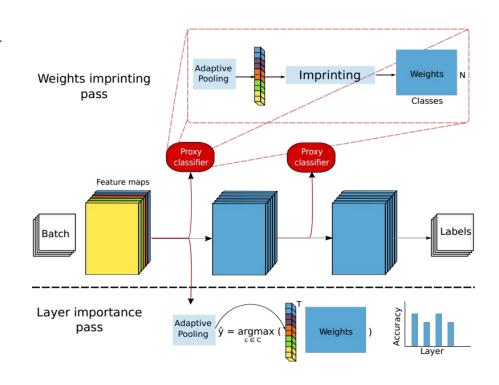
- The prediction for each sample *j* in the validation set is calculated by:

$$\hat{y}_j = \underset{c \in \{1, \dots, C\}}{\operatorname{argmax}} W_i[:, c]^T E_j,$$

- Proxy classifiers after each layer →
 Accuracy up to this layer.
- How to calculate layer-wise accuracy efficiently without the need for re-training?
 - We adopt weights imprinting
 - Motivated by few-shot learning work
 [11, 12]
- One-shot layer importance by imprinting



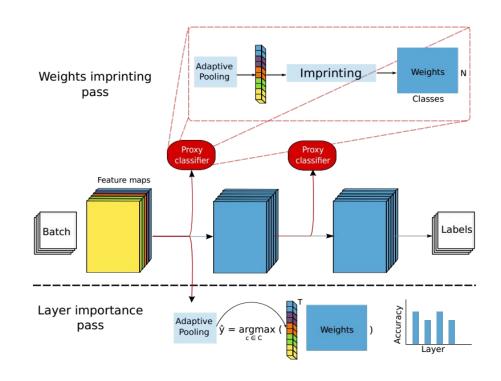
- Proxy classifiers after each layer →
 Accuracy up to this layer.
- How to calculate layer-wise accuracy efficiently without the need for re-training?
 - We adopt weights imprinting
 - Motivated by few-shot learning work
 [11, 12]
- One-shot layer importance by imprinting
- Rank layers based on their accuracy relative to previous pruning candidate



[11] Qi, Hang, Matthew Brown, and David G. Lowe. "Low-shot learning with imprinted weights." CVPR 2018. [12] M. Siam, B.O., Jagersand, M.: "Amp: Adaptive masked proxies for few-shot segmentation." ICCV 2019.

- Classification weights for the ith layer W_i
- Weight for each class c can be represented as the average of embeddings for all samples belonging to that class, each sample with embedding E,

$$W_i[:,c] = \frac{1}{N_c} \sum_{j=1}^{N} I_{[c_j = =c]} E_j$$



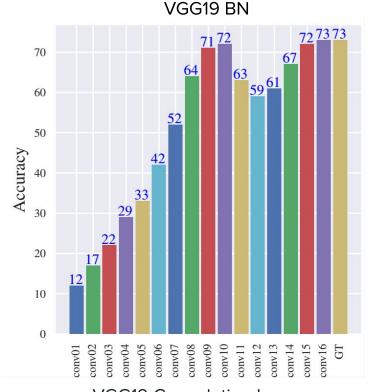
Evaluation & Analysis

Experiments

- Datasets
 - CIFAR-100
 - ImageNet
- Architecture
 - VGG
 - ResNet-50

VGG - CIFAR100

- Drop in accuracy followed by an increasing trend from conv10 to conv14.
 - This is likely because the number of features is the same from conv10 to conv12.
 - We start to observe an accuracy increase only at conv13 that follows a max pooling layer and has twice as many features.



VGG19 Convolution Layers

VGG - CIFAR100

- Drop in accuracy followed by an increasing trend from conv10 to conv14.
- Our method improves on the previously reported accuracy [Masking in 22] by
 1.18% while achieving a 43.70% latency reduction over VGG19 vs. the previous state-of-the-art at 26.75% (Masking).
- In terms of accuracy, we outperform the average of 10 randomly layer-pruned models of similar latency reduction as ours (≈ 40%) by 5.43%

Method	Accuracy	N layers	Params $(1e^6)$	Latency reduction (%)
VGG19 baseline	73.11	16	20.09	0
Random layer pruning	68.95	-	2	40.00
Layer-wise proxy (ours)	74.38	12	9.28	43.70
Slimming [9]	72.32	16	5.00	25.26
Masking [22]	73.2	16	4.20	26.75
Taylor [8]	72.61	16	4.79	23.24
ECC [15]	72.71	16	7.86	25.17

Table 1: Pruning results on CIFAR100 showing **best** and **second best** in each criterion. Latency reduction is measured on 1080Ti GPU across 1000 runs.

ResNet50 - ImageNet

- On bar with the state-of-the art filter pruning method in accuracy.
- Minimal model that can be achieved by filter pruning methods such as ECC achieves 14.45% latency reduction.

Method	Accuracy	N layers	Params $(1e^6)$	Latency reduction (%)
ResNet-50 baseline	76.14	53	25.5	0
Layer-wise proxy - 1 block (ours)	76.72	50	25.4	16.06
Layer-wise proxy - 1 block + 3 layers (ours)	75.0	44	24.1	24.02
ThinNet 9	72.04	53	16.94	10.52
Taylor 7	76.43	53	22.6	2.73
ECC 14	74.88	53	23.5	1.93
ECC minimal model	16.3	53	6.14	11.56

Table 2: Pruning results on ImageNet showing **best** and **second best** in each criterion. Latency reduction is measured on 1080Ti GPU across 1000 runs with batch size=1.

^{*} Minimal model is the one with the same depth as the dense model but with one filter per each prunable layer.

ResNet50 - ImageNet

- We further compare imprinting layer pruning on similar latency budget with smaller ResNet variants such as ResNet34 and ResNet41
- We outperform ResNet41 by **0.9**% and ResNet34 by **1.44**%.

Method	Accuracy	N layers	Params $(1e^6)$	Latency reduction (%)
ResNet-50 baseline	76.14	53	25.5	0
Layer-wise proxy - 4 blocks (ours)	76.40	41	24.8	25
ResNet-41 24	75.50	44	25.3	25
Layer-wise proxy - 6 blocks (ours)	74.74	35	23.4	39
ResNet-34 19	73.30	37	21.7	39

Conclusion

- We proposed a one-shot layer pruning method that incorporates a layer-wise accuracy approximation through imprinting.
- Our method achieves higher latency reduction compared to filter pruning methods and manually crafted variants.
- Our method is not limited by model architecture design.

Thanks!

Code: https://github.com/selkerdawy/one-shot-layer-pruning

