

Activity Normalization for Activity Detection in Surveillance Videos

Takashi Hosono¹, Kiyohito Sawada², Youngqing Sun¹, Kazuya Hayase¹, Jun Shimamura¹

1 NTT Media Intelligence Laboratories, Japan 2 National Police Academy, Japan

Activity detection in surveillance videos

• Detects spatial position and time at which activity occurs

Example of ACTEV/VIRAT dataset

: activities

: objects relevant to activities

NT7

General processing flow

Generates activity-proposal on basis of object detection and tracking
Estimates activity class for each activity-proposal

General processing flow

Generates activity-proposal based on object detection and tracking
Estimates activity class for each activity-proposal

Difficulty of activity classification

NTT 🕐

• Diversity of activity appearances in the same class

caused by diversity of object-movement directions and inter object positional relationships

Diversity of object-movement direction Class: carrying

Various movement directions

: movement direction

Diversity of inter-object positional relationship

Class: loading

Various positional relationships

Approach: activity normalization

 Align object-movement direction and inter-object positional relationships by rotating and flipping activity proposal

Object-movement-direction normalization Inter-object-positional-relationship normalization

Activity normalization

NTT

NTT

NTT

Object-movement-direction normalization

- 1. Calculate optical flow angle in object regions
- 2. Mode angle in object region is selected as object-movement direction
- 3. Activity proposal is rotated so that it becomes a fixed angle

Activity proposal

: object

Optical flow

Object-movement

direction

Normalized activity proposal

Inter-object-positional-relationship normalization

- 1. Calculate gradient vectors by Sobel filter
- 2. Mode angle in reference object region is selected as reference object direction
- 3. Activity proposal is rotated so that it becomes a fixed angle
- 4. Flip so that the left-right positional relationship is constant

Activity proposal

car

Gradient images

person

Reference object

direction

NTT

Normalized activity proposal

Evaluation

- Test with ActEV/VIRAT dataset
 - We evaluated only activity classification
 - Activity proposal is generated using ground truth
 - Comparison methods
 - Baseline [Sun+ TRECVID19]
 - Baseline + data-augmentation (DA)
 - Activity proposal rotated and flipped in 16 directions
 - Mean precision improved by 0.05 with activity normalization

Activity	Baseline	Baseline+DA	Ours
Vehicle turning right	0.682	0.622	0.827
Vehicle turning left	0.609	0.574	0.808
Vehicle U-turn	0.458	0.483	0.646
Activity carrying	0.950	0.904	0.933
Transport heavy carry	0.672	0.412	0.605
Pull	0.707	0.667	0.715
Riding	0.933	0.939	0.935
Loading	0.437	0.429	0.608
Unloading	0.251	0.381	0.279
Open trunk	0.243	0.292	0.147
Closing trunk	0.116	0.100	0.131
Opening	0.307	0.358	0.318
Closing	0.362	0.420	0.428
Entering	0.358	0.380	0.466
Exiting	0.384	0.519	0.468
Talking	0.774	0.784	0.798
Talking phone	0.043	0.035	0.028
Texting phone	0.003	0.005	0.004
Mean	0.461	0.461	0.508

Precision

Normalized activity proposals

Class: vehicle turning right

Class: loading

Effects of two type normalization

	Object-movement-direction normalization (baseline + mov) is more effective for activity with movement				
	Method	mAP (car activity)	mAP (car-person activity)	mAP	
Baselir	าย	0.583	0.307	0.461	
Baselir	ne + mov	0.738	0.321	0.485	
Baselir	ne + pos	0.644	0.345	0.484	
Baselir	ne + mov + pos (ours)	0.760	0.356	0.508	

Effects of two types normalization

Inter-object-positional-relationship normalization (baseline + pos) is more effective for activity with car-person interaction

Method	mAP		mAP	mAP
	(car activity) (car-person activity)			vity)
Baseline	0.583		0.307	0.461
Baseline + mov	0.738		0.321	0.485
Baseline + pos	0.644		0.345	0.484
Baseline + mov + pos (ours)	0.760		0.356	0.508

Test with whole pipeline

- Evaluated accuracy of activity detection with nAUDC (normalized partial area under the detection error trade-off curve)
- Effect of our method is smaller than when ground truth activity proposals are used
 - Problems remain when using realistic activity proposals

nAUDC (lower is better)

Method	nAUDC
Baseline [Sun+ TRECVID19]	0.589
Baseline + mov. + pos. (ours)	0.579

Conclusion

Summary

- We proposed an activity normalization method to suppress the number of activity appearances
 - activity proposal is rotated and flipped so that the object-movement direction and inter-object-positional relationship are constant
- Experimental results showed that our method can improve activity classification accuracy
- Future work
 - > Make activity normalization method more robust to realistic activity proposals
 - > Validate its compatibility with other activity detection approaches

Thank you for watching