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Background

• Observe growth kinematics for plant physiology studies

• Root tip tracking for analysis of plant phenotyping
• Growth rate 

• Measure effects of different manipulations on root - perturbations
• e.g. cut plant shoot, apply substance

2



• High resolution root tip microscopy 

image sequence (2448x2048)

• Tracking the root tip for velocity estimation
• Manually too error prone, 

even when generating ground truth

• The sequence is perturbed for an unknown number of frames
• Cutting the root shoot – analyze effects

• Many collected videos
• Manually too long, too many videos to be analyzed 3

Root Tip Tracking



Root Tip Tracking

• Subpixel accuracy in high-resolution
• Smooth transition between (bounding box) BBoxes

• No jitter, no size changes in BBoxes

• Time and duration of perturbation is unknown
• Automatic identification of root + root tip

• Root tip might be gone, or blurry

• Automatic recovery

• Current well-performing trackers:
• fail to track accurately

• needs manual re-initialization
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Rtip Results
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RTip Algorithm
Fully Automated root tip tracker

• Automatic Init and Reinit (AIR) with BBox improvement
• Automatic localization of root tip

• Identify blurry images with root tip

• Improved BBox – best fit in neighborhood

• Automatic Invalid Frame (AIF) Detection-Recovery
• Automatic identification: 

• Invalid frames – no root

• Valid frames - root

• Robust (Kanade–Lucas–Tomasi feature tracker) KLT (rKLT) Tracking

with (M-estimator sample consensus) MSAC Outlier Filtering
• Smooth BBox transition
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Kanade–Lucas–Tomasi feature tracker (KLT)

• Shi-Tomasi corner detector -> feature points
• Eigen values of structure tensor for each pixel p: λ1, λ2, threshold λ

• Pixel p is corner <--> min λ1λ2 > λ

• Track feature points 𝒙 in time 𝑡 → 𝑡 + 𝜏 :
• 𝐼 𝑥, 𝑦, 𝑡 + 𝜏 = 𝐼 𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡

• Model displacement 𝒅 = 𝜉, 𝜂 of the point 𝒙 = 𝑥, 𝑦 between 𝑡 and 𝑡 + 𝜏
• Motion vectors -> Gradient of Hessian matrix at 𝒙

• Minimize the error of noise 𝜂
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• Carlo Tomasi and T Kanade, “Detection and Tracking of point features,” Tech. Rep., Tech. Rep. CMU-CS-91- 132, Carnegie Mellon University, 1991.
• Jianbo Shi and Tomasi, "Good features to track," CVPR, Seattle, WA, USA, 1994, pp. 593-600.



Automatic Init and Reinit (AIR) with bbox improvement

• Template + Normalized Cross Correlation (NCC) → initial candidate BBox

• Neighbor BBoxes of initial candidate 
• KLT* to track points, count # of inliers (Forward-Backward error)

• Chose the BBox with max inliers – (re)start rKLT tracker

• Blurry, corrupted, perturbed frame with root
• maximum # of inliers < threshold (i.e. 1500 points)

• Frame is not good to restart tracker

• Run AIR for next frame

8* Carlo Tomasi and T Kanade Detection, “Tracking of point features,” Tech. Rep., Tech. Rep. CMU-CS-91- 132, Carnegie Mellon University, 1991.



Automatic Init and Reinit (AIR) with bbox improvement

Best bbox
# inliers = 2907

Features after KLT 
with FBE

Features of 
init candidate

all candidatesinit candidate

init candidate all candidates Features of init candidate Features after KLT with FBE Best bbox # inliers = 18 9
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Simplified Radon Transform (RT)

• RT operator calculates projections of an object along specified angles by line integrals

• Coordinates are rotated by each 𝜃 ∈ [0,180]

• A set of parallel lines are integrated that are perpendicular to the rotated axis 

𝑅𝜃 𝑥′ = ∞−׬
∞

𝑓 𝑥′𝑐𝑜𝑠𝜃 − 𝑦′𝑠𝑖𝑛𝜃, 𝑥′𝑠𝑖𝑛𝜃 + 𝑦′𝑐𝑜𝑠𝜃 𝑑𝑦′ ,

𝑤ℎ𝑒𝑟𝑒
𝑥′

𝑦′
=

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑥
𝑦

• Simplified RT: 𝜃 = 0 and 𝜃 = 90 for simpler images

10* Picture from MATLAB web pagehttps://www.mathworks.com/help/images/radon-transform.html . 

Fig. 1.* RT of an object over 𝜃

Fig. 2. Image frame 015 from sequence Fig. 3. RT for 0 and 90 degrees of frame 015



Simple root + root tip identification using radon transform
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Automatic Invalid Frame (AIF) Detection-Recovery

• Apply Simplified Radon Transform (RT) on 0 and 90 degrees

• Find Chebyshev distance between RTs of each degree 

• 𝐷𝑖,𝜃
𝑅𝑇 𝑹𝑻𝑖 , 𝑹𝑻𝑖−1 = max

𝑝
|𝑅𝑇𝑖,𝑝 − 𝑅𝑇𝑖−1,𝑝| and  𝐷𝑠,𝜃

𝑅𝑇 𝑹𝑻𝑖 , 𝑹𝑻𝑠 = max
𝑝

|𝑅𝑇𝑖,𝑝 − 𝑅𝑇𝑠,𝑝|

• p: projection vector axis, i: current frame, s: safe frame
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Fig. 1. 𝐷𝑖,0

𝑅𝑇 and 𝐷𝑠,0
𝑅𝑇 distance values for the whole sequence  Fig. 2. 𝐷𝑖,90

𝑅𝑇 and 𝐷𝑠,90
𝑅𝑇 distance values for the whole sequence  

Safe frame =  15 Safe frame =  15



Robust KLT (rKLT) Tracking with MSAC Outlier Filtering
• Track Shi-Tomasi feature points from the Bbox with KLT

• KLT tracks feature points – rKLT: Minimize Forward-Backward Error (FBE*) 

• Estimate Similarity transformation between feature points and tracked points
• Use Forward-Backward Error again to eliminate outliers

• M-estimator sample consensus (MSAC**) - outlier elimination in trans. Estimation

• Transform the Bbox to the next frame by the transformation

(*) Z. Kalal, K. Mikolajczyk and J. Matas, "Forward-Backward Error: Automatic Detection of Tracking Failures," ICPR, Istanbul, 2010, pp. 2756-2759
(**) Torr, Philip HS, and Andrew Zisserman. "MLESAC: A new robust estimator with application to estimating image geometry." Computer vision and image understanding 78.1 (2000): 138-156 13



RANSAC vs. M-estimator sample consensus (MSAC)

• RANSAC is effective in finding the minimum cost for the function

𝑐 = σ𝑖 𝜌(𝑒𝑖
2), where 𝜌() is 𝜌 𝑒2 = ቊ0 𝑒2 < 𝑇2

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒2 ≥ 𝑇2

and T is the threshold.

• inliers don’t have a score and outliers score a constant penalty
• higher T causes more solutions to have same cost, leads poor estimation

• MSAC* minimizes same cost func. with robust error term 𝜌() is  

• 𝜌 𝑒2 = ቊ𝑒
2 𝑒2< 𝑇2

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒2 ≥ 𝑇2

• outliers are still given a fixed penalty, but
• inliers are scored on how well they fit the data.

(*) Torr, Philip HS, and Andrew Zisserman. "MLESAC: A new robust estimator with application to estimating image geometry." Computer vision and image understanding 78.1 (2000): 138-156 14
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Robust KLT (rKLT) Tracking with MSAC Outlier Filtering

Inliers after MSAC
# inliers = 2265

Inliers after KLT 
with FBE
# inliers = 2663

Extracted features
# features = 3004

Bbox to track New BBox
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Tracked features
# features = 2265

Inliers after KLT 
with FBE
# inliers = 2103

Inliers after MSAC
# inliers = 2096

Inliers after MSAC
# inliers = 2084

Tracked features
# features = 2122

Inliers after KLT 
with FBE
# inliers = 2087
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Inliers after MSAC
# inliers = 2122

Inliers after KLT 
with FBE
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Tracked features
# features = 3004
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Experiments

• Experimented on 2 datasets
• 2048x2448

• 80 frames each – 160 in total

• Sampling rate is 30 seconds per frame – total elapsed time is ≈ 40 min

• 6 other trackers are also run on the same datasets for comparison
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Trackers

• Discriminative Correlation Filter Tracker (CSRT) – multiple feature channels
• Lukezic, Alan, et al. "Discriminative correlation filter with channel and spatial reliability." CVPR 2017.

• SiamDW – deep learning, given default weights are used
• Zhang, Zhipeng, and Houwen Peng. "Deeper and wider siamese networks for real-time visual tracking." CVPR 2019.

• Multiple Instance Learning (MIL) – discriminative classifier separate background-foreground
• Babenko, Boris, et al. "Visual tracking with online multiple instance learning." CVPR 2009.

• MedianFlow – Forward-Backward error to detect tracking failures
• Kalal, Zdenek, et al. "Forward-backward error: Automatic detection of tracking failures." ICPR 2010.

• Kernelized Correlation Filters (KCF) – color features – tracking by detection
• Danelljan, Martin, et al. "Adaptive color attributes for real-time visual tracking." CVPR 2014.

• Tracking, learning and detection (TLD) – learn detection errors
• Kalal, Zdenek, et al. "Tracking-learning-detection." IEEE transactions on pattern analysis and machine intelligence 34.7 (2011): 1409-1422.
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Ground Truth Generation
• Start from initial bounding box of first frame

• Manually locate BBox in each 5th frame

• Generate Bbox in between by interpolating centroids of i and i+4
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Results

• 𝑉𝑒𝑟𝑟 = Difference between ground truth and tracker velocity estimation

• RMSE = Root mean squared error between the Bboxes and initial template

• SSIM = Structural Similarity Index between Bboxes and initial template

• Adapt = Adaptation to perturbed frames

• GT = Ground Truth (with linear interpolation)
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• 𝑉𝑒𝑟𝑟
• RTip 0.49 ± 0.34

• RMSE
• GT 6.23±1.68
• RTip 6.37±1.58
• MedianFlow 6.35±1.88

• SSIM
• GT 0.81 ± 0.05
• RTip 0.80 ± 0.05
• MedianFlow 0.80 ± 0.05

• RTip: Automatic reinit - Adaptive



Conclusion

• Simplified Radon Transform can be used to identify root and root tip

• KLT with FBE + similarity transformation estimation with FBE + MSAC 
eliminate outliers - robust BBox transition

• NCC with KLT+FBE to find best BBox can be used to identify root tip -
good recovery
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Future Work

• Machine learning to select distance threshold value intelligently that 
will work with all sequences without manual tuning 

• Using contour information for tracking

• Use a deep learning detector for faster and accurate recovery
• YOLO – retrain with variety of root species

• Extend RTip to detect medial line of the root
• DeepFlux – deep learning algorithm finds skeleton of objects
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Thank you for listening..

Questions?
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