Development of New Fractal and Non-fractal Deep Residual Networks for Deblocking of JPEG Decompressed Images

> Alireza Esmaeilzehi, Student Member IEEE M. Omair Ahmad, Fellow IEEE M.N.S. Swamy, Fellow IEEE

Department of Electrical and Computer Engineering, Concordia University Montréal, Québec, Canada Session Title: 1038:(COM-01.1) Machine Learning for Image and Video Compression

October 2020

Table of Contents

- Introduction
- Deep JPEG Image Deblocking Networks
- Network Architectures
- Ablation Studies
- Comparison with the State-of-the-art Schemes
- Conclusion

Introduction

► JPEG Image Compression

JPEG Decompression

Fig. 1. JPEG Image Compression and Decompression (Ref. https://beyondresolution.info/JPEG-THE-GUY-BEHIND-THE-GUY-BEHIND-THE-GUY)

 \blacktriangleright The scheme is applied to the image blocks of size 8×8.

Deep JPEG Image Deblocking Networks

DCSC Sparse Representation Convolutional Neural Networks X G * X $\mathbf{U}_0 \mathbf{S} * \mathbf{U}_0$ $\mathbf{U_1} \ \mathbf{S} \ast \mathbf{U_1}$ $\mathbf{U_2} \quad \mathbf{S} \ast \mathbf{U}_2$ н DF=4Multi-scale feature extraction **Convolutional LISTA** Image reconstruction DF : dilation factor C : concatnation (+) : element-wise addition $\overline{\sigma}$: ReLU

4

Deep JPEG Image Deblocking Networks

DnCNN

Residual Learning, Convolution+BN+ReLU

Proposed Recursive Deblocking Network

Hierarchical Residual Features Simple Residual Block High Frequency Residual Features Kernel Size: 3x3 Kernel Size: 3x3 Number of Filters: 64 Number of Filters: 64 Kernel Size: 1x1 Number of Filters: 64 Conv. +ReLU Conv. +ReLU ReLU+ PW Conv. +ReLU PW Conv. Z с u Block Size: 2x2 Kernel Size: 1x1 Stride: 1 Number of Filters: 64 (a) Kernel Size: 3x3 Kernel Size: 3x3 Number of Filters: 64 Number of Filters: 1 25 Recursions **Restored** Image Decompressed Image Conv. +ReLU a Simple Residual Block The second Conv.

y

Fig. 6. Architecture of the Proposed Recursive Network.

6

(a) Simple Residual Block (SRB).

(b) Recursive Deblocking Network.

х

Proposed Fractal Deblocking Network

Compound Residual Block

Replacing each convolution in SRB by SRB itself

Fusing features from various levels of abstraction

(b)

7

Fig. 7. Architecture of the Proposed Fractal Network.(a) Compound Residual Block (CRB).(b) Fractal Deblocking Network.

Ablation Studies

Networks

RN: Recursive Network with SRB

RN with SRB Variant: Recursive Network employing SRB without High Frequency Residual Feature Generation Branch
NN: Non-recursive Fractal Network with CRB
NN with SRB: Non-recursive Network with SRB

Table 1. Ablation Studies.

Dataset	RN with SRB Variant	RN	NN with SRB	NN
Classic5	29.21 (0.7993)	29.28 (0.8010)	29.46 (0.8053)	29.56 (0.8088)
Live1	29.20 (0.8149)	29.23 (0.8157)	29.33 (0.8183)	29.42 (0.8208)

Network Performance

▶ Impact of number of recursions on the performance of the recursive network.

Table 2. Performance vs Number of Recursions

Dataset	5 Recursions	15 Recursions	25 Recursions
Classic5	28.89 (0.7880)	29.01 (0.7920)	29.28 (0.8010)
Live1	28.93 (0.8056)	29.04 (0.8091)	29.23 (0.8157)

Comparison between the performance and complexity of the various deep JPEG image deblocking networks.

Table 3. Performance and Number of Parameters of Various Schemes

Dataset	Quality Factor	JPEG	ARCNN	TNRD	DCSC	Proposed	DnCNN	LPIO	DRMU	Proposed
Classic5	10	27.82 (0.7595)	29.03 (0.7929)	29.28 (0.7992)	29.25 (0.8030)	29.28 (0.8010)	29.40 (0.8030)	29.35 (0.8010)	29.43 (0.8041)	29.56 (0.8088)
	20	30.12 (0.8344)	31.15 (0.8517)	31.47 (0.8576)	31.43 (0.8600)	31.41(0.8578)	31.63 (0.8610)	31.58 (0.8560)	31.63 (0.8613)	31.78(0.8642)
Live1 [15]	10	27.77 (0.7730)	28.96 (0.8076)	29.15 (0.8111)	29.17 (0.8150)	29.23 (0.8157)	29.19 (0.8120)	29.17 (0.8110)	29.31 (0.8178)	29.42 (0.8208)
	20	30.07 (0.8512)	31.29 (0.8733)	31.46 (0.8769)	31.48 (0.8800)	31.51 (0.8803)	31.59 (0.8800)	31.52 (0.8760)	31.67 (0.8832)	31.80(0.8857)
Number of Parameters		-	106K	21K	94K	91K	737K	1394K	761K	728K

Visual Quality of the Deblocked Images

Visual quality of the deblocked *lighthouse* images obtained by the proposed networks, when quality factor is 10.

Fig. 8. Visual qualities. (a) GT. (b) JPEG Image. (c) Recursive Network. (d) Fractal Network.

- Two deep light-weight deblocking networks have been proposed.
- The proposed residual block uses two feature generation strategies for image deblocking, namely, hierarchical residual feature generation and high frequency residual feature generation.
- The two types of features generated by the proposed residual block have been fused in order to increase the representational capability of the network.
- Both of the proposed deblocking networks have outperformed the state-of-the-art deblocking schemes in terms of network performance and complexity.

References

[1] C. Dong, Y. Deng, C.C. Loy and X. Tang, "Compression artifacts reduction by a deep convolutional network", In ICCV, 2015.

[2] X. Fu, Z-J Zha, F. Wu, X. Ding and J. Paisley, "JPEG artifact reduction via deep convolutional sparse coding, In ICCV, 2019.

[3] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: residual learning of deep CNN for image denoising", IEEE Transactions on Image Processing, 2017.

[4] A. Esmaeilzehi, M. O. Ahmad and M.N.S. Swamy, "Deep JPEG image deblocking using residual maxout units", In ICIP, 2019.

Thank You

Contact:

alireza.esmailzehi@gmail.com