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Introduction

» JPEG Image Compression
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Fig. 1. JPEG Image Compression and Decompression (Ref. https://beyondresolution.info/JPEG-THE-GUY-BEHIND-THE-
GUY-BEHIND-THE-GUY)

» The scheme is applied to the image blocks of size 8x8.




Deep JPEG Image Deblocking Networks
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» ARCNN Shallow Network
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Fig. 2. Architecture of ARCNN. (Ref.: [1])
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» DCSC Sparse Representation Convolutional Neural Networks
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Fig. 3. Architecture of DCSC. (Ref.: [2])




Deep JPEG Image Deblocking Networks

» DnCNN > Residual Learning, Convolution+BN+ReLU
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Fig. 4. Architecture of DnCNN. (Ref.: [3])
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Fig. 5. Architecture of DRMU. (Ref.: [4])




Proposed Recursive Deblocking Network

» Simple Residual Block » Hierarchical Residual Features
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Fig. 6. Architecture of the Proposed Recursive Network.
(a) Simple Residual Block (SRB).
(b) Recursive Deblocking Network.
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Proposed Fractal Deblocking Network

Replacing each convolution in SRB by
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(a) Compound Residual Block (CRB).

(b) Fractal Deblocking Network.
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Ablation Studies

Networks RN: Recursive Network with SRB

RN with SRB Variant: Recursive Network employing SRB
| without High Frequency Residual Feature Generation Branch

NN: Non-recursive Fractal Network with CRB

NN with SRB: Non-recursive Network with SRB

Table 1. Ablation Studies.

Dataset | RN with SRB Variant RN NN with SRB NN

Classic5 29.21 (0.7993) 29.28 (0.8010) ||| 29.46 (0.8053) | 29.56 (0.8088)
Livel 29.20 (0.8149) 29.23 (0.8157) ||| 29.33 (0.8183) | 29.42 (0.8208)




Network Performance

» Impact of number of recursions on the performance of the recursive network.

Table 2. Performance vs Number of Recursions

Dataset 5 Recursions 15 Recursions | 25 Recursions
Classic5 | 28.89 (0.7880) | 29.01 (0.7920) | 29.28 (0.8010)
Livel 28.93 (0.8056) | 29.04 (0.8091) | 29.23 (0.8157)

» Comparison between the performance and complexity of the various deep JPEG image deblocking

networks.

Table 3. Performance and Number of Parameters of Various Schemes

Dataset | Quality Factor JPEG ARCNN TNRD DCSC Proposed DnCNN LPIO DRMU Proposed
Classics 10 27.82(0.7595) | 29.03 (0.7929) | 29.28 (0.7992) | 29.25 (0.8030) | 29.28 (0.8010) ||| 29.40 (0.8030) | 29.35 (0.8010) | 29.43 (0.8041) | 29.56 (0.8088)
20 30.12 (0.8344) | 31.15(0.8517) | 31.47 (0.8576) | 31.43 (0.8600) | 31.41(0.8578) ||| 31.63 (0.8610) | 31.58 (0.8560) | 31.63 (0.8613) | 31.78(0.8642)
Livel [15] 10 27.77(0.7730) | 28.96 (0.8076) | 29.15 (0.8111) | 29.17 (0.8150) | 29.23 (0.8157) ||| 29.19 (0.8120) | 29.17 (0.8110) | 29.31 (0.8178) | 29.42 (0.8208)
20 30.07 (0.8512) | 31.29 (0.8733) | 31.46 (0.8769) | 31.48 (0.8800) | 31.51 (0.8803) ||| 31.59 (0.8800) | 31.52(0.8760) | 31.67 (0.8832) | 31.80(0.8857)
Number of Parameters - 106K 21K 94K 91K 737K 1394K 761K 728K




Visual Quality of the Deblocked Images

» Visual quality of the deblocked lighthouse images obtained by the proposed
networks, when quality factor is 10.

(a) (b) (c) (d)

Fig. 8. Visual qualities. (a) GT. (b) JPEG Image. (c) Recursive Network. (d) Fractal Network.
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Conclusion

» Two deep light-weight deblocking networks have been proposed.

» The proposed residual block uses two feature generation strategies for image deblocking,
namely, hierarchical residual feature generation and high frequency residual feature

generation.

» The two types of features generated by the proposed residual block have been fused in

order to increase the representational capability of the network.

» Both of the proposed deblocking networks have outperformed the state-of-the-art

deblocking schemes in terms of network performance and complexity.
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