#### **Motion Blur Prior**

Filip Sroubek and Jan Kotera

The Czech Academy of Sciences Institute of Information Theory and Automation Prague, Czechia





# **Motion Blur**



#### Camera motion

**Object motion** 





#### Image Degradation Model



AbirDhia



# Deblurring

$$\min_{u,h} \frac{\gamma}{2} \|D(h,u) - z\|^2$$

$$\int_{\text{Data}}_{\text{term}}$$

• Coupling of u and h  $\rightarrow$  infinite number of solution





# **Deblurring Regularization**



- Coupling of u and h  $\rightarrow\,$  infinite number of solution
- Image gradient is sparse irrespective of the content

$$\phi(u) = \sum_{i} |\nabla u_i|^p$$





# **Deblurring Regularization**



- Coupling of u and h  $\rightarrow$  infinite number of solution
- Less informative priors: non-negativity, preserve energy  $\rightarrow$   $h \in S := \{h_i \ge 0, \sum h_i = 1\}$





# Atomic Norm

 $A := \{a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}\}$  ... set of atoms  $a^{(2)} = [0, 1]$  $||x||_A := \inf\{t > 0 \mid \frac{1}{t}x \in \operatorname{conv}(A)\}$  $a^{(3)}$  $a^{(1)}$ = [1, 0] $\frac{1}{0.5}x$  $\frac{1}{4}x$  $\mathcal{X}$ Atomic norm with this Aimplements the  $\ell_1$  norm.

Different atoms give rise to different norms, e.g. nuclear, infinity norm ...





# Linear Program

Advantage: Atomic norm can be implemented as a LP problem

$$\|x\|_{A} = \min_{c} \sum_{i} c_{i}$$
  
subject to  $x = \sum_{i} c_{i} a^{(i)}, c_{i} \ge 0$ 





## **Proposed Curve Prior**

• Atoms are curve segments

$$\psi(h) = \begin{cases} \alpha \|h\|_A, & h \in S := \{h_i \ge 0, \sum_i h_i = 1\}; \\ +\infty, & \text{otherwise} \end{cases}$$





# Blind Deblurring with Curve Prior

Czech Academy of Sciences

$$\begin{split} \min_{h,u} \frac{\gamma}{2} \|D(h,u) - z\|^2 + \phi(u) + \psi(h) \\ \min_{h,c,u} \frac{\gamma}{2} \|D(h,u) - z\|^2 + \phi(u) + \chi_S(h) + \alpha \sum_i c_i \\ \text{s.t.} \quad h = \sum_i c_i a^{(i)}, \, c_i \ge 0 \\ \text{Indicator function:} \\ \chi_S(h) = \begin{cases} 0, & h \in S := \{h_i \ge 0, \sum_i h_i = 1\}; \\ +\infty, & \text{otherwise} \end{cases} \end{split}$$



#### Performance w.r.t. Noise



Abù Dhiabi



#### Performance w.r.t. Noise







#### Real-data examples









#### Fast-Moving-Object Dataset

- Input
- Ground truth
- Std. Prior









# Thank you for your attention

sroubekf@utia.cas.cz

code: zoi.utia.cas.cz/curveprior



