Loss Rescaling by Uncertainty Inference for Single-stage Object Detection

*Yan Li¹, Xiaoyi Chen¹, Li Quan¹, Ni Zhang¹

¹NEC Laboratories, China *Presenter

The 27th IEEE International Conference on Image Processing (ICIP 2020) Session: TEC-04 -- Machine Learning for Image and Video Processing II Paper: TEC-04.6

Learning Convolutional Object Detectors with Biases

- Deep learning model may fit biasedly to examples that appear more frequently or are easier to be distinguished.
- In object detection tasks, negative samples often dominate in training because the background areas are larger than the foreground objects, and most of them have similar appearances.
- To guide the convolutional object detectors learning with different difficulty levels:
 - Hard example mining
 - Focal loss
 - ...

Is learning difficulty involves only with the prediction probability?

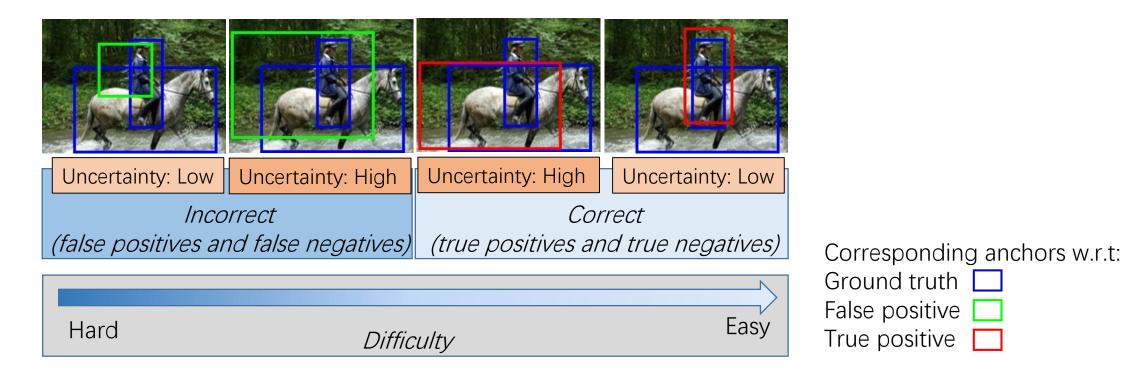
Modeling Uncertainty for Deep Neural Network

- Approximation to the Bayesian uncertainty estimation
 - Monte-Carlo Dropout
 - Variational Bayesian inference
- Relations between uncertainty and model learning
 - Bayesian Segnet demonstrates strong inverse relationship between segmentation accuracy and model uncertainty.
 - Salman Khan et al re-adjust classification boundaries for biased data by uncertainty estimates.

Uncertainty estimates are correlated with the difficulty level of input samples.

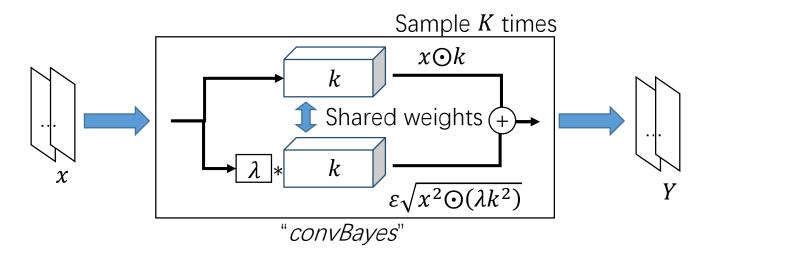
Relating Difficulty to Uncertainty Estimates and Prediction Correctness

• Learning difficulty of positive anchors for single-stage object detectors



Bayesian Convolution Layer ("convBayes")

• Assume the weights of the convolution kernel: $w \sim N(k, \lambda k_2)$.



The output follows a Gaussian distribution: $\begin{bmatrix}
\mu = x \odot k \\
\sigma = \sqrt{x^2 \odot (\lambda k^2)}
\end{bmatrix}$

• Formulaic as,

Sampled from N(0, 1)

$$Y = \frac{1}{K} \sum_{i=1}^{K} \left(x \odot k + \varepsilon \sqrt{x^2 \odot (\lambda k^2)} \right), \quad (1)$$
Convolution opt.

Bayesian Active Learning by Disagreement (BALD)

• Using the estimated mean μ and variance σ , the uncertainty score U_{BALD} is calculated by method proposed by Neil Houlsby et al,.

Binary entropy function

$$U_{\text{BALD}} = h\left(\rho\left(\frac{\mu}{\sqrt{\sigma^2 + 1}}\right)\right) - \left(\frac{C}{\sqrt{\sigma^2 + C^2}}\right) \exp\left(-\frac{\mu^2}{2(\sigma^2 + C^2)}\right), \quad (2)$$
Gaussian cumulative density

where $C = \sqrt{(\pi \ln 2)/2}$.

Difficulty Scoring

• Difficulty map is defined by relations between uncertainty score and prediction correctness

$$D = \begin{cases} 0.5 * U & if correct\\ 0.5 * (1.0 - U) + 0.5 & otherwise, \end{cases}$$
(3)

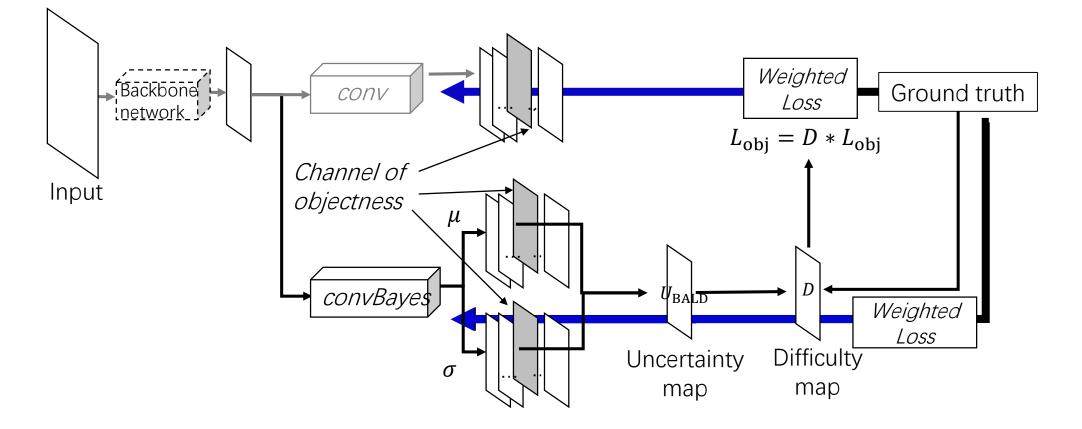
where $U = sigm(U_{BALD})$.

For object detection tasks, we assume that:

- 1. Correct predictions (TP and TN) are always less difficult than incorrect predictions (FP and FN).
- 2. For correct predictions, higher uncertainties reveal higher difficulty.
- 3. For incorrect predictions, lower uncertainties reveal higher difficulty.

Network Architecture

• Using *"convBayes"* layer as auxiliary branch to estimate model uncertainty during training



Experiments on VOC datasets

- Dataset
 - Pascal VOC with 20 categories annotations of foreground objects
 - Training subset: VOC07 trainval + VOC12 trainval (**16,551**)
 - Testing subset: VOC07 test (4,952)
- Training details
 - Data augmentation: HSV random distortion, random cropping and flipping
 - Input size: 608x608 with zero padding
 - Backbone network: Darknet53
- Evaluation metric
 - Mean average precision (mAP)

Comparison of Results & Ablation Study

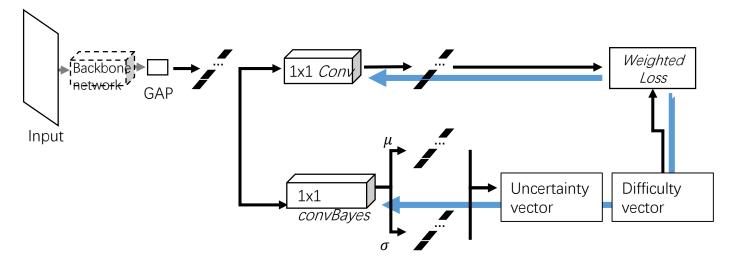
• Evaluation results of object detection on VOC07test. (Darknet53 as backbone network)

mAP
76.62%
75.18%
76.43%
77.34%
76.38%
76.01%

...

Additional Experiments on Image Classification Task

• Architecture slightly changed for image classification task



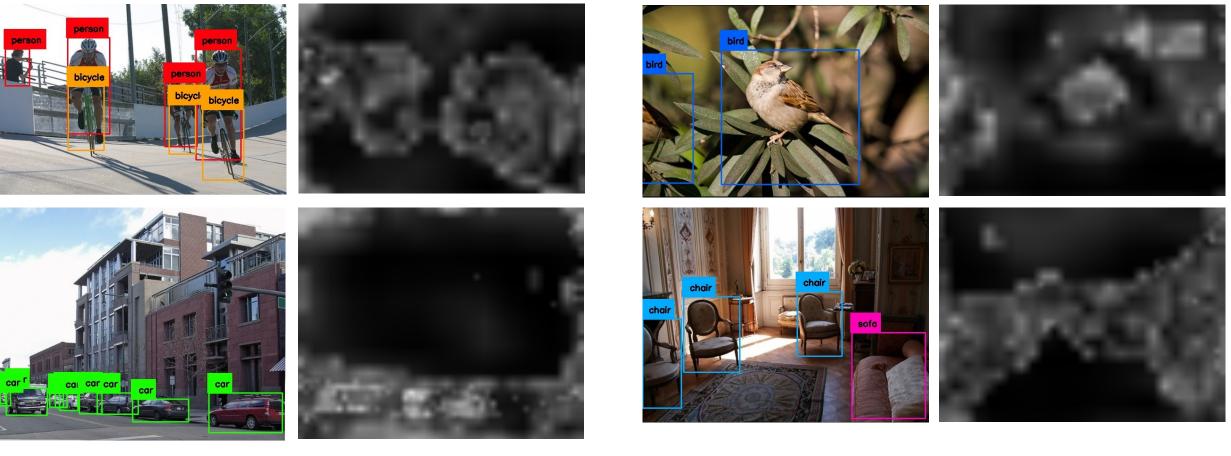
- Training details
 - CIFAR-10 with 10 categories of image level annotations
 - Backbone network: Resnet50
- Evaluation metric
 - Top-1 classification accuracy

Comparison of Results & Ablation Study

• Evaluation results of image classification on CIFAR-10. (Resnet50 as backbone network)

Name	Top 1 Accu.
CE	92.88 ± 0.33%
Focal loss	93.07 ± 0.49%
Anchor loss	93.13 ± 0.99%
Uncertainty weighted loss (Ours)	$93.56 \pm 0.37\%$
For ablation study	
Baseline w/ convBayes	92.73 ± 1.13%
► CONV	
► convBayes 🗪	

Some Visualized Results



Detection results

Uncertainty map (each pixel indicates the BALD of corresponding anchor)

Detection results

Uncertainty map (each pixel indicates the BALD of corresponding anchor)

Conclusion & Discussion

- The uncertainty estimates of deep neural network are correlated with prediction difficulty and can be used to guide model learning for better performance.
- The limited improvements brought by proposed uncertainty weighted loss module might because there is only one Bayesian convolution layer in current architecture. In future works, **a multi-Baysian convolution layer design** might bring more accurate uncertainty estimates.
- The uncertainty inference module should be supported by **a pertinently designed loss** and **merged with loss rescaling mechanism** so as to further enlarge the variance of each predictions and reduce computation redundancies.

Thanks.

Loss Rescaling by Uncertainty Inference for Single-stage Object Detection

Yan Li, Xiaoyi Chen, Li Quan, Ni Zhang NEC Laboratories, China The 27th IEEE International Conference on Image Processing (ICIP 2020)