Energy Detection in ISI Channels Using Large-Scale Receiver Arrays

Lishuai Jing and Elisabeth De Carvalho

APNet Section, Dept. of Electronic Systems Aalborg University, Aalborg, Denmark

March 24, 2016.

◆□ → < 部 → < 差 → < 差 → 差 < う へ () 1/15

Motivation: Systems with a Large Number of Antennas

Non-coherent Detection in Wideband Systems with Massive Receiver Arrays

Conclusions

◆□ → < 部 → < 差 → < 差 → 差 → ○ < ? 2/15

Outline

Motivation: Systems with a Large Number of Antennas

Non-coherent Detection in Wideband Systems with Massive Receiver Arrays

Conclusions

<ロ> < 部> < 言> < 言> < 言 > こ 3/15 Enablers for next generation communication systems:

 $\ensuremath{\text{Massive MIMO}}\xspace$: Base stations/ Back-hauls have the capacity to nest a large number of antennas.

In mmWave frequencies, small size terminals can host a large number of antennas.

Why Hosting More Antennas?

Drastic improvement of system capacity and reliability becomes possible.

More antennas, more DoF and multiplexing gain.

Why Hosting More Antennas?

Drastic improvement of system capacity and reliability becomes possible.

More antennas, more DoF and multiplexing gain.

Energy efficiency can be significantly enhanced.

- ▶ High power amplifier is substituted by cheap and low gain power amplifiers.
- ▶ Beamforming gain: Pencil-beams direct power to desired user.

Why Hosting More Antennas?

Drastic improvement of system capacity and reliability becomes possible.

More antennas, more DoF and multiplexing gain.

Energy efficiency can be significantly enhanced.

- ▶ High power amplifier is substituted by cheap and low gain power amplifiers.
- ▶ Beamforming gain: Pencil-beams direct power to desired user.

Simple linear processing techniques lead to close-to-optimal performance.

- Uplink: when $M \gg K$, MF, ZF, MMSE nearly optimal.
- Downlink: simple precoders, e.g. MRT, ZF, MMSE, are promising.

Key assumption: **Perfect** or **nearly-perfect** channel state information (CSI) is required.

Channel Estimation Challenges

Downlink training becomes not "economical":

To provide optimal performance, orthogonal training is required:

- ▶ No. of downlink pilots scales with the number of BS antenna *M*: A large portion of time-frequency resource is needed.
- No. of unknown channel coefficients scales with M:
 - Resources demanded to feedback the CSI from user terminal to base station escalates.

Uplink Training Solution: TDD operation exploiting channel reciprocity.

▶ Training resources scale with K instead of M.

However,

- Channel reciprocity does not always hold: hardware constraints and fast fading channels.
- Large channel estimation error in medium and low SNR scenarios.
- Pilot contamination.

Our Proposal: Low Complexity Non-coherent Energy Detection

Figure: Single stream transmission with a large-scale receiver array.

Advantages:

- Low hardware complexity: No phase shifter and amplifiers at RF chains.
- Noise hardening: Deterministic noise.
- ▶ Central limit theorem: Gaussian approximations for related variables.
- Simple decoding method: Detection based on the statistics of the channel energy instead of instantaneous CSI.
- ▶ No capacity loss compared to coherent detection when *M* is large.

Outline

Motivation: Systems with a Large Number of Antennas

Non-coherent Detection in Wideband Systems with Massive Receiver Arrays

Conclusions

4 ロ > 4 部 > 4 差 > 4 差 > 差 の Q ()
8/15

Non-coherent Energy Detection in Wideband (mmWave) Systems

Consider additive white Gaussian noise, the received signal at time j reads

$$\mathbf{y}(j) = \sum_{l=0}^{L-1} \mathbf{h}_l x(j-l) + \mathbf{n}(j),$$
(1)

▶ *I*th path channel coeff.: $\mathbf{h}_{l} = [h_{1,l}, \dots, h_{M,l}]^{T}$. **Objective**: Detect unknown data x(j) based on

$$z(j) = \frac{||\mathbf{y}(j)||_2^2}{M}.$$
 (2)

イロト イポト イヨト イヨト 二日

9/15

Asymptotical Analysis

The output of the ED is written as:

$$z(j) = \frac{1}{M} ||\mathbf{h}_{0}||_{2}^{2} |x(j)|^{2} + \underbrace{\frac{1}{M} \sum_{l=1}^{L-1} ||\mathbf{h}_{l}||_{2}^{2} |x(j-l)|^{2}}_{\text{ISI}_{1}} + \underbrace{\frac{1}{M} \sum_{l \neq l'} x^{*}(j-l)x(j-l')\mathbf{h}_{l}^{H}\mathbf{h}_{l'}}_{\text{ISI}_{2}} + \underbrace{\frac{2}{M} \Re\left(\sum_{l=0}^{L-1} \mathbf{h}_{l}^{H}\mathbf{n}x(j-l)\right)}_{\text{ISI}_{3}} + \frac{1}{M} \mathbf{n}^{H}(j)\mathbf{n}(j).$$
(3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Asymptotical Analysis

The output of the ED is written as:

$$z(j) = \frac{1}{M} ||\mathbf{h}_{0}||_{2}^{2} |x(j)|^{2} + \underbrace{\frac{1}{M} \sum_{l=1}^{L-1} ||\mathbf{h}_{l}||_{2}^{2} |x(j-l)|^{2}}_{\text{ISI}_{1}} + \underbrace{\frac{1}{M} \sum_{l\neq l'} x^{*}(j-l)x(j-l')\mathbf{h}_{l}^{H}\mathbf{h}_{l'}}_{\text{ISI}_{2}} + \underbrace{\frac{2}{M} \Re \left(\sum_{l=0}^{L-1} \mathbf{h}_{l}^{H}\mathbf{n}x(j-l)\right)}_{\text{ISI}_{3}} + \frac{1}{M} \mathbf{n}^{H}(j)\mathbf{n}(j).$$
(3)

Employing uncorrelated scattering assumption, asymptotically, we obtain

$$\frac{\mathbf{h}_{l}^{H}\mathbf{h}_{l'}}{M} \xrightarrow{M \to +\infty} \sigma_{h,l}^{2} \delta_{l,l'}, \quad \frac{\mathbf{h}_{l}^{H}\mathbf{n}(j)}{M} \xrightarrow{M \to +\infty} \mathbf{0}, \quad \frac{\mathbf{n}^{H}(j)\mathbf{n}(j)}{M} \xrightarrow{M \to +\infty} \sigma_{n}^{2}.$$

Thus,

$$z(j) \xrightarrow{M \to +\infty} \sum_{l=0}^{L-1} \sigma_{h,l}^2 |x(j-l)|^2 + \sigma_n^2.$$
(4)

<ロ > < 部 > < 言 > < 言 > こ き へ の へ の 10/15

Asymptotical Analysis

A standard equalization problem is obtained:

$$z(j) \xrightarrow{M \to +\infty} \sum_{l=0}^{L-1} \sigma_{h,l}^2 |x(j-l)|^2 + \sigma_n^2.$$
(5)

- Noise contribution becomes deterministic.
- Instantaneous CSI becomes irrelevant: only average channel energy of each tap is required (long term statistics).
- Simple equalization techniques may work well.

Proposed solution: Employing Zero Forcing equalizer and use average channel energy to compute its coefficients.

Performance Evaluation

Uncoded system: channel with exponential power decay PDP and L = 4.

- ZF produces a SER performance scales with the number of antennas and SNR.
- Promising results at low and medium SNR regimes.
- More antennas leads to significantly lower SER.
- Reach extension is granted with equipping more antennas.

12/15

Performance Evaluation

Uncoded system: channel with exponential power decay and L = 4.

As SNR increases, the performance gap widens a bit due to the noise enhancement when applying the ZF equalizer.

Outline

Motivation: Systems with a Large Number of Antennas

Non-coherent Detection in Wideband Systems with Massive Receiver Arrays

Conclusions

・ロ ・ ・ 一 ・ ・ 言 ・ ・ 言 ・ う へ (や 14 / 15

Conclusions: Coherent or Non-coherent Detection

Coherent detection is optimal, but channel estimation is the bottleneck.

With a large number of receiver antennas, **non-coherent detection performs close-to-optimal:**

- Second order statistics of the channel coefficients are required instead of instantaneous CSI.
 - Long term and more robust statistics can be estimated over a longer horizon.
 - ► A simplified channel estimation problem and robust to mobility.
- Noise hardening: reach extension is guaranteed and noise may not be the limiting factor for system performance.
- Low complexity hardware: no phase shifters and gain controller at each RF chain.
- Low complexity decoding algorithms thanks to the law of large numbers and central limit theorem.