Sparsity preserved canonical correlation analysis

Presenter: Muhammad Ali Qadar Authors: Abd-Karim Seghouane and Muhammad Ali Qadar

Regular Session, Paper # 3200 Department of Electrical and Electronic Engineering, The University of Melbourne

	Outline	

- 2 Background
- O Proposed method
- 4 Experimental results

Introduction •			
	Introduction	1	

- Canonical correlation analysis (CCA) describes relationship between two set of variables.
- Sparse CCA improves interpretability in high-dimensional settings.
- However, sparse CCA do not preserve sparsity across canonical directions¹.
- We propose a sparse CCA that ensures consistency in recovered sparsity patterns.
- A penalized alternating least squares framework with l_2^1 -norm to enforce block sparsity.

¹A. Seghouane, N. Shokouhi and I. Koch. "Sparse Principal Component Analysis With Preserved Sparsity Pattern". In: *IEEE Transactions on Image Processing* 28.7 (2019), pp. 3274–3285. ISSN: 1057-7149. DOI: 10.1109/TIP.2019.2895464.

Background ●0		

Background

Canonical correlation analysis

Consider N i.i.d samples of $\mathbf{x} \in \mathbb{R}^p$ and $\mathbf{y} \in \mathbb{R}^q$, CCA extracts the pairs of vectors $\mathbf{w}_{x_i} \in \mathbb{R}^p$ and $\mathbf{w}_{y_i} \in \mathbb{R}^q$, $1 \le i \le d \le \min(p, q)$ such that

where $\boldsymbol{\Sigma}_{x} = \mathbb{E}[\mathbf{x}^{\top}\mathbf{x}], \ \boldsymbol{\Sigma}_{y} = \mathbb{E}[\mathbf{y}^{\top}\mathbf{y}], \ \boldsymbol{\Sigma}_{xy} = \boldsymbol{\Sigma}_{yx}^{\top} = \mathbb{E}[\mathbf{x}^{\top}\mathbf{y}]$ are covariance and cross-covariances, respectively.

Background ⊙●			
	Background	I	

Sparse CCA

When p >> N and q >> N, it is likely that only a fraction of variables are informative. To address this selection problem, additional constraints has been imposed on CCA problem (1):

where c_1 and c_2 are regularization parameters.

	Proposed method	
	000	

Proposed method

The proposed method preserves sparsity among d sets of $\mathbf{W}_x \in \mathbb{R}^{p \times d}$ and $\mathbf{W}_y \in \mathbb{R}^{q \times d}$ by imposing l_2^1 -norm group sparse penality. The proposed objective function is:

$$\min_{\mathbf{W}_{x},\mathbf{W}_{y}} \|\mathbf{X}\mathbf{W}_{x} - \mathbf{Y}\mathbf{W}_{y}\|_{F}^{2} + \alpha \sum_{i=1}^{p} \|\mathbf{w}_{x}^{i}\|_{2} + \beta \sum_{j=1}^{q} \|\mathbf{w}_{y}^{j}\|_{2} \quad (3)$$

where \mathbf{w}_x^i and \mathbf{w}_y^j are both $d \times 1$ vectors corresponding to the *i*th and *j*th rows of \mathbf{W}_x and \mathbf{W}_y , respectively. α and β are sparsity controlling parameters.

	Proposed method 000	

Proposed method

 \mathbf{W}_x and \mathbf{W}_y are obtained by a block coordinate descent method where each of the variables are computed row by row using the closed form solutions.

$$\mathbf{w}_{y}^{j} = \frac{1}{\mathbf{y}_{j}^{\top}\mathbf{y}_{j}} \left[1 - \frac{\beta}{2 \left\| \mathbf{y}_{j}^{\top}\mathbf{E}_{j} \right\|_{2}} \right]_{+} \mathbf{y}_{j}^{\top}\mathbf{E}_{j}$$
(4)

where \mathbf{y}_j is the j^{th} column of \mathbf{Y} , $\mathbf{E}_j = \mathbf{X}\mathbf{W}_x - \sum_{\substack{i=1\\i\neq j}}^{q} \mathbf{y}_i \mathbf{w}_y^i$, $[x]_+ = max(0, x)$, and

$$\mathbf{w}_{x}^{i} = \frac{1}{\mathbf{x}_{i}^{\top}\mathbf{x}_{i}} \left[1 - \frac{\alpha}{2 \left\| \mathbf{x}_{i}^{\top}\mathbf{F}_{i} \right\|_{2}} \right]_{+} \mathbf{x}_{i}^{\top}\mathbf{F}_{i}$$
(5)

where \mathbf{x}_i is the *i*th column of \mathbf{X} and $\mathbf{F}_i = \sum_{\substack{j=1 \ j \neq i}}^{p} \mathbf{x}_j \mathbf{w}_x^j - \mathbf{Y} \mathbf{W}_y$.

	Proposed method 00●		
	Durantari]	

Proposed method

Figure: Shows changes in estimated canonical loading vectors for the proposed algorithm in terms of Frobenius norm.

	Experimental results	
	00000	

Simulation

To generate data matrices (X, Y)

- Canonical projection matrices $\mathbf{W}_x \in \mathbb{R}^{p_x imes q_x}$ and $\mathbf{W}_y \in \mathbb{R}^{q_x imes q_y}$
- $\mathbf{D}_x = diag(vec(\mathbf{W}_x)) \text{ and } \mathbf{D}_y = diag(vec(\mathbf{W}_y)),$ $\mathbf{D}_x \in \mathbb{R}^{p_x q_x \times p_x q_x}, \mathbf{D}_y \in \mathbb{R}^{p_y q_y \times p_y q_y}$
- $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{z} \in \mathbb{R}^d$ with (d << p, d << q)
- Orthonormal basis matrix \mathbf{U}_x of size $p_x q_x imes d$

	Experimental results 0●000	

Simulation

- $\mathbf{x} = \mathbf{D}_{x}\mathbf{U}_{x}\mathbf{z} + \boldsymbol{\eta}_{x}, \, \boldsymbol{\eta}_{x} \sim (\mathbf{0}, \sigma_{x}^{2}\mathbf{I})$ with $\sigma_{x} = 0.15$ (and $\sigma_{y} = 0.1$), $\mathbf{x} \in \mathbb{R}^{p_{x}q_{x}}$
- Generate N samples $\mathbf{X} = [\mathbf{x}_1^\top \cdots \mathbf{x}_N^\top]$ and $\mathbf{Y} = [\mathbf{y}_1^\top \cdots \mathbf{y}_N^\top]$
- We set N = 150, $p_x = q_x = 15$, and $p_y = q_y = 14$.
- The value of d = 5 set using the model selection criterion^a

^aA. K. Seghouane and N. Shokouhi. "Estimating the Number of Significant Canonical Coordinates". In: *IEEE Access* 7 (2019), pp. 108806–108817. ISSN: 2169-3536.

	Experimental results 00●00	

Figure: Completely overlapping sparsity pattern of the original canonical loading vectors.

	Experimental results	

Proposed

Figure: Shows consistency in sparsity across estimated W_x and W_y .

			Experimental results 0000●		
Experimental results					

Figure: Sparse grid for the recovered sparsity patterns across W_x and W_y .

		Conclusion ●00
	Conclusion	

- An SCCA algorithm that share same sparsity across components.
- l_2^1 -norm penalization was used to encourage block sparsity.
- Experiments show strength of the proposed algorithm in terms of estimating consistent sparsity patterns.

				000
		References		
1. A. So Compor <i>Transac</i> ISSN: 10 2. A. K Significa pp. 108	eghouane, N. S nent Analysis V <i>stions on Image</i> 057-7149. DOI 3. Seghouane a ant Canonical 806–108817. I	Shokouhi and I. Ko Vith Preserved Spa e Processing 28.7 (: 10.1109/TIP.20 nd N. Shokouhi. " Coordinates". In: SSN: 2169-3536	ch. "Sparse Principa arsity Pattern". In: <i>I</i> (2019), pp. 3274–328 019.2895464 Estimating the Num <i>IEEE Access</i> 7 (2019	al EEE 35. ber of 1),
3. D. N decomp and can pp. 515 4. Xi C	1. Witten, R. 7 osition, with a onical correlat –534 hen, Liu Han a	ibshirani and T. H pplications to span ion analysis". In: 1 nd Jaime Carbone	lastie. "A penalized se principal compone <i>Biostatistics</i> 10.3 (20 II. "Structured Spare	matrix ents 109), se

Canonical Correlation Analysis". In: *Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics* (2012), pp. 199–207

Introduction O	Background 00	Proposed method	Experimental results 00000	Conclusion

Thank You!