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Introduction

e Canonical correlation analysis (CCA) describes relationship
between two set of variables.

@ Sparse CCA improves interpretability in high-dimensional
settings.

@ However, sparse CCA do not preserve sparsity across canonical

directions!.

@ We propose a sparse CCA that ensures consistency in
recovered sparsity patterns.

@ A penalized alternating least squares framework with lzl-norm
to enforce block sparsity.

IA. Seghouane, N. Shokouhi and I. Koch. “Sparse Principal Component Analysis
With Preserved Sparsity Pattern”. In: |EEE Transactions on Image Processing 28.7
(2019), pp. 3274-3285. 1ssN: 1057-7149. po1: 10.1109/TIP.2019.2895464. 3
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Background

Canonical correlation analysis

Consider N i.i.d samples of x € RP and y € R9, CCA extracts the
pairs of vectors w,, € R? and wy, € R9, 1 < i < d < min(p, q)

such that
(W, Wy, ) = arg max WXTZway
Wi, Wy
. T _ T _
subjectto  wy, Tw, =1, w, T w, =1 (1)

T T
w, 2w, =0, w,2yw, =0

Vi<j<d-1,j<i

where X, = E[x"x], £, = E[y'y], T,y = Z;( =E[x"y] are
covariance and cross-covariances, respectively.
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Background

Sparse CCA

When p >> N and g >> N, it is likely that only a fraction of
variables are informative. To address this selection problem,
additional constraints has been imposed on CCA problem (1):

(W, w,) =arg maxw, C,,w,
Wy, Wy,

subjectto [yl <1, [wyl, <1, ()

lwxlly < e flwylly < e

where ¢; and ¢ are regularization parameters.
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Proposed method

The proposed method preserves sparsity among d sets of
W, € RP*9 and W, € R9%9 by imposing /2-norm group sparse
penality. The proposed objective function is:

p q
onin [XW = YW, [ +a ) [will,+ 8w,  (3)
i i=1 j=1

where w!, and w§, are both d x 1 vectors corresponding to the it
and j*™ rows of W, and W, respectively. a and 3 are sparsity
controlling parameters.
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Proposed method

W, and W, are obtained by a block coordinate descent method
where each of the variables are computed row by row using the
closed form solutions.

; 1 B T
w17 | TE (4)
Y yTy: TE. s

75 | el.

where y; is the j* column of Y, E; = XW, — >°7 | yiw),
i#

[x]+ = max(0, x), and

x; F; (5)
+

wl = 1 1-— a
oxixi | 2|lxTFi,

where x; is the /™ column of X and F; = 37, x;w) — YW,
J#i
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Proposed method
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Figure: Shows changes in estimated canonical loading vectors for the
proposed algorithm in terms of Frobenius norm.
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Experimental results

To generate data matrices (X, Y)

e Canonical projection matrices W, € RP<*% and W, € R%**9

e D, = diag(vec(Wy)) and D, = diag(vec(W,)),
DX e RpquprqXY Dy € RPy 9y XPyQy

o z~ N(0,1),z € R with (d << p,d << q)
@ Orthonormal basis matrix U, of size pygyx X d
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Experimental results

e x = DU,z + n,, 0, ~ (0,021) with o, = 0.15 (and
o, =0.1), x € RPx%

o Generate N samples X = [x{ ---x{] and Y = [y - - y/]
o We set N = 150, px = gx = 15, and p, = q, = 14.

@ The value of d =5 set using the model selection criterion?

2A. K. Seghouane and N. Shokouhi. “Estimating the Number of Significant
Canonical Coordinates”. In: |[EEE Access 7 (2019), pp. 108806—-108817. ISSN:
2169-3536.
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Experimental results

Original Wx Original Wy noisy sample Wx noisy sample Wy

Figure: Completely overlapping sparsity pattern of the original canonical
loading vectors.
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Experimental results
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Figure: Shows consistency in sparsity across estimated W, and W,,.
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Experimental results
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Figure: Sparse grid for the recovered sparsity patterns across W, and W,,.
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Conclusion

@ An SCCA algorithm that share same sparsity across
components.

° l21-norm penalization was used to encourage block sparsity.

@ Experiments show strength of the proposed algorithm in terms
of estimating consistent sparsity patterns.

14
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Thank You!
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