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Introduction

Canonical correlation analysis (CCA) describes relationship
between two set of variables.

Sparse CCA improves interpretability in high-dimensional
settings.

However, sparse CCA do not preserve sparsity across canonical
directions1.

We propose a sparse CCA that ensures consistency in
recovered sparsity patterns.

A penalized alternating least squares framework with l12 -norm
to enforce block sparsity.

1A. Seghouane, N. Shokouhi and I. Koch. “Sparse Principal Component Analysis
With Preserved Sparsity Pattern”. In: IEEE Transactions on Image Processing 28.7
(2019), pp. 3274–3285. issn: 1057-7149. doi: 10.1109/TIP.2019.2895464.

https://doi.org/10.1109/TIP.2019.2895464
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Background

Canonical correlation analysis

Consider N i.i.d samples of x ∈ Rp and y ∈ Rq, CCA extracts the
pairs of vectors wxi ∈ Rp and wyi ∈ Rq, 1 ≤ i ≤ d ≤ min(p, q)
such that

(wxi ,wyi ) = arg max
wx ,wy

wx
>Σxywy

subject to wx
>Σxwx = 1, wy

>Σywy = 1

w>x Σxwxj = 0, w>y Σywyj = 0

∀ 1 ≤ j ≤ d − 1, j < i

(1)

where Σx = E[x>x], Σy = E[y>y], Σxy = Σ>yx = E[x>y] are
covariance and cross-covariances, respectively.
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Background

Sparse CCA

When p >> N and q >> N, it is likely that only a fraction of
variables are informative. To address this selection problem,
additional constraints has been imposed on CCA problem (1):

(wx ,wy ) = arg max
wx ,wy

w>x Cxywy

subject to ‖wx‖2 ≤ 1, ‖wy‖2 ≤ 1,

‖wx‖1 ≤ c1, ‖wy‖1 ≤ c2

(2)

where c1 and c2 are regularization parameters.
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Proposed method

The proposed method preserves sparsity among d sets of
Wx ∈ Rp×d and Wy ∈ Rq×d by imposing l12 -norm group sparse
penality. The proposed objective function is:

min
Wx ,Wy

‖XWx − YWy‖2
F + α

p∑
i=1

∥∥wi
x

∥∥
2

+ β

q∑
j=1

∥∥wj
y

∥∥
2

(3)

where wi
x and wj

y are both d × 1 vectors corresponding to the i th

and j th rows of Wx and Wy , respectively. α and β are sparsity
controlling parameters.
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Proposed method

Wx and Wy are obtained by a block coordinate descent method
where each of the variables are computed row by row using the
closed form solutions.

wj
y =

1

y>j yj

1− β

2
∥∥∥y>j Ej

∥∥∥
2


+

y>j Ej (4)

where yj is the j th column of Y, Ej = XWx −
∑q

i=1
i 6=j

yiw
i
y ,

[x ]+ = max(0, x), and

wi
x =

1

x>i xi

[
1− α

2
∥∥x>i Fi

∥∥
2

]
+

x>i Fi (5)

where xi is the i th column of X and Fi =
∑p

j=1
j 6=i

xjw
j
x − YWy .
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Proposed method

0 5 10 15 20 25 30 35

Iterations

0

1

2

3

4

5

R
e

s
id

u
a

l 
e

rr
o

r

||W
x

i

 - W
x

i-1

||
F

||W
y

i

 - W
y

i-i

||
F

 = 0.01 

  = 0.02 

0 5 10 15 20 25 30 35

Iterations

0

1

2

3

4

5

R
e

s
id

u
a

l 
e

rr
o

r

||W
x

i

 - W
x

i-1

||
F

||W
y

i

 - W
y

i-i

||
F

 = 0.08 

  = 0.05 

0 5 10 15 20 25 30 35

Iterations

0

1

2

3

4

5

R
e

s
id

u
a

l 
e

rr
o

r

||W
x

i

 - W
x

i-1

||
F

||W
y

i

 - W
y

i-i

||
F

 = 0.10 

  = 0.20 

(a) (b) (c)

Figure: Shows changes in estimated canonical loading vectors for the
proposed algorithm in terms of Frobenius norm.
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Experimental results

Simulation

To generate data matrices (X,Y)

Canonical projection matrices Wx ∈ Rpx×qx and Wy ∈ Rqx×qy

Dx = diag(vec(Wx)) and Dy = diag(vec(Wy )),
Dx ∈ Rpxqx×pxqx , Dy ∈ Rpyqy×pyqy

z ∼ N (0, I), z ∈ Rd with (d << p, d << q)

Orthonormal basis matrix Ux of size pxqx × d
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Experimental results

Simulation

x = DxUxz + ηx , ηx ∼ (0, σ2
x I) with σx = 0.15 (and

σy = 0.1), x ∈ Rpxqx

Generate N samples X = [x>1 · · · x>N ] and Y = [y>1 · · · y>N ]

We set N = 150, px = qx = 15, and py = qy = 14.

The value of d = 5 set using the model selection criteriona

aA. K. Seghouane and N. Shokouhi. “Estimating the Number of Significant
Canonical Coordinates”. In: IEEE Access 7 (2019), pp. 108806–108817. issn:
2169-3536.
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Experimental results
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Figure: Completely overlapping sparsity pattern of the original canonical
loading vectors.
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Experimental results
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Figure: Shows consistency in sparsity across estimated Wx and Wy .
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Experimental results
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Figure: Sparse grid for the recovered sparsity patterns across Wx and Wy .
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Conclusion

An SCCA algorithm that share same sparsity across
components.

l12 -norm penalization was used to encourage block sparsity.

Experiments show strength of the proposed algorithm in terms
of estimating consistent sparsity patterns.
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Thank You!
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