

IEEE International Conference on Image Processing (ICIP 2020)

Channel Shuffle Recontruction Network For Image Compressive Sensing

Wen Li, Sumei Li, Renhe Liu

School of Electrical and Information Engineering Tianjin University, China

Speaker: Wen Li

Background

• Wide application of compressive sensing theory.

Magnetic resonance imaging

Block diagram of single pixel camera

Schematic of the spectral imager

Method

The complete architecture of our proposed model.

• IRSN

The architecture of initial reconstruction sub-network (IRSN).

- The IRSN can adaptively learn the measurement matrix and generate a preliminary reconstructed image.
- The IRSN contains two reshape layers and two fully connected layers.

The architecture of channel shuffle sub-network (CSSN).

- The CSSN takes the output of IRSN as input and reconstruction the final high quality image.
- The CSSN contains the multi-scale convolution block (MSCB) and the channel shuffle block (CSB).

• MSCB

The architecture of multi-scale convolution block (MSCB).

- The multi-scale convolution block contains four parallel branches to extract features of different scales from the input and fuse features of various scales through the 'concat' layer.
- We adopt two MSCBs at the begin and the end of CSSN, respectively.

Method

• CSB

The architecture of channel shuffle block (CSB).

- Two convolutional layers and one skip connection form an inverted residual structure.
- The slice layer ensures that only part of the information is sent to the inverted residual structure, reducing the amount of network parameters, and the shuffle layer realizes information fusion.

- Evaluation Criteria
- Evaluation index: PSNR
- Comparison algorithm:TVAL3 [1], D-AMP [2], SDA [3], ReconNet [4], DR²-Net [5], ConvCSNet [6], ISTA-Net+ [7], FDC-Net [8] and SCSNet [9]

- Deep learning framework: caffe
- Learning rate: begins with 0.0001 and stops at 0.00001
- Input: 33×33 image patches
- Optimizer: Adam
- Loss: MSE loss

[1] C. Li, W. Yin, H. Jiang, and Y. Zhang, "An efficient augmented lagrangian method with applications to total variation minimization," in Computational Optimization and Applications, vol. 56, no. 3, pp. 507-530, 2013.

[2] C. A. Metzler, A. Maleki, and R. G. Baraniuk, "From denoising to compressed sensing," in IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 5117-5144, 2016.

[3] A. Mousavi, A. B. Patel, and R. G. Baraniuk, "A deep learning approach to structured signal recovery," in Proceeding of 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015.

[4] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, "Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 449-458, 2016.

[5] H. Yao, F. Dai, D. Zhang, Y. Ma, and S. Zhang, "DR2-Net: Deep residual reconstruction network for image compressive sensing," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 483-493, 2017.

[6] Lu X, Dong W, and Wang P, "ConvCSNet: A convolutional compressive sensing framework based on deep learning," arXiv preprint arXiv:1801.10342, 2018.

[7] J. Zhang and B. Ghanem, "ISTA-Net: Interpretable optimization inspired deep network for image compressive sensing," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1828-1837, 2018.

[8] Z. Zhang, D. Gao, X. Xie, and G. Shi, "Dual-channel reconstruction network for image compressive sensing," in Sensors, pp. 2549, 2019.

[9] W. Shi, F. Jiang, S. Liu, and D. Zhao, "Scalable convolutional neural network for image compressed sensing," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12290-12299, 2019.

• Quantitative results

Mean PSNR results on Set11 at various MRs. The best results are highlighted.

Algorithms	PSNR (dB)			
	0.25	0.10	0.04	0.01
TVAL3 [1]	27.84	22.84	18.39	11.31
D-AMP [2]	28.17	21.14	15.49	5.19
SDA [3]	24.72	22.43	19.96	17.29
ReconNet [4]	25.54	22.68	19.99	17.27
DR ² -Net [5]	28.66	24.32	20.80	17.44
ConvCSNet [6]	26.97	23.30	20.40	17.34
ISTA-Net+ [7]	31.57	26.61	21.31	17.34
FDC-Net [8]	32.15	27.84	24.68	20.64
SCSNet [9]		28.48		21.04
Proposed	33.66	28.70	24.89	20.09

• Our network surpasses all algorithms at MR=0.25, MR=0.10 and MR=0.04.

• Visual results

Reconstruction results of image "Monarch" (the top picture) at MR=0.04 and image "flinstones" (the bottom picture) at MR=0.25.

• Time complexity

- ◆ Left: Running time of different methods on a test image of size 256 × 256 at various MRs.
- ◆ Right: The PSNR and running time for reconstructing a single 256×256 image at measurement rate 0.10.
- Although our network runs slower than most of the competing deep learning methods, it still maintains a comparable time complexity with good speed-accuracy balance.

• Effects of CSB

	MR=0.25 (PSNR)	MR=0.04 (PSNR)
Residual block [13]	33.41	24.47
Inverse residual block [19]	33.38	24.53
Channel shuffle block (CSB)	33.66	24.89

Effectiveness of CSB on Set11 at MR=0.25 and MR=0.04.

- ◆ To demonstrate the effect of CSB, we replace it with the plain residual block adopted in DR²-Net [5] and the inverted residual block.
- ◆ The network with CSB outperforms its counterparts by a large margin.

• Effects of MSCB

Convergence analysis on network with and without multi-scale convolution block.

◆ The curves are based on the average PSNR on Set11 at measurement rate 0.04 in 84 epochs.

Conclusions

Conclusions

- A channel shuffle reconstruction network is proposed for CS image reconstruction.
- We first build an initial reconstruction sub-network (IRSN) to generate a preliminary reconstructed image, and then extend the IRSN by adding a channel shuffle sub-network (CSSN).
- We combine the merits of the inverted residual structure with channel shuffle operation to propose an efficient channel shuffle block in CSSN.
- We take advantages of multi-scale convolution to fully explore features at different scales.
- The experimental results demonstrate that our proposed method obtains a superior performance.
- In future work, we intend to study better optimization strategies.

Thank You!

For any question, please contact: tjnklsm@163.com wenliwl@tju.edu.cn