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® Wide application of compressive sensing theory.
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The complete architecture of our proposed model.
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The architecture of initial reconstruction sub-network (IRSN).

® The IRSN can adaptively learn the measurement matrix and generate a preliminary reconstructed image.
® The IRSN contains two reshape layers and two fully connected layers.
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® CSSN
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The architecture of channel shuffle sub-network (CSSN).

® The CSSN takes the output of IRSN as input and reconstruction the final high quality image.
® The CSSN contains the multi-scale convolution block (MSCB) and the channel shuffle block (CSB).
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® MSCB
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The architecture of multi-scale convolution block (MSCB).

® The multi-scale convolution block contains four parallel branches to extracte features of different scales from
the input and fuse features of various scales through the 'concat' layer.
® We adopt two MSCBs at the begin and the end of CSSN, respectively.
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® CSB
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The architecture of channel shuffle block (CSB).

® Two convolutional layers and one skip connection form an inverted residual structure.

® The slice layer ensures that only part of the information is sent to the inverted residual structure, reducing the
amount of network parameters, and the shuffle layer realizes information fusion.
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® Evaluation Criteria ® Deep learning framework: caffe

® [ carning rate: begins with 0.0001 and

® Evaluation index: PSNR stops at 0.00001

® Comparison algorithm:TVAL3 [1], D-AMP [2], ® Input: 33%33 1mage patches
SDA [3], ReconNet [4], DR2-Net [5], ConvCSNet o
[6], ISTA-Net+ [7], FDC-Net [8] and SCSNet [9] ® Optimizer: Adam

® [ oss: MSE loss
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® (Quantitative results

Mean PSNR results on Setl1 at various MRs. The best results are highlighted.

. PSNR (dB)
Algorithms
0.25 0.10 0.04 0.01
TVAL3 [1] 27.84 22.84 18.39 11.31
D-AMP [2] 28.17 21.14 15.49 5.19
SDA [3] 24.72 22.43 19.96 17.29
ReconNet [4] 25.54 22.68 19.99 17.27
DR2-Net [5] 28.66 24.32 20.80 17.44
ConvCSNet [6] 26.97 23.30 20.40 17.34
ISTA-Net+ [7] 31.57 26.61 21.31 17.34
FDC-Net [8] 32.15 27.84 24.68 20.64
SCSNet [9] -- 28.48 -- 21.04
Proposed 33.66 28.70 24.89 20.09

€ Our network surpasses all algorithms at MR=0.25, MR=0.10 and MR=0.04.
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® Visual results
ReconNet [4] DR2-Net [5] ISTA-Net+ [7] Proposed

22.45dB 26.19dB 30.03dB 30.58dB

Reconstruction results of image “Monarch’” (the top picture) at MR=0.04 and image “flinstones” (the bottom picture) at MR=0.25.
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® Time complexity
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€ Left: Running time of different methods on a test image of size 256 x 256 at various MRs.

€ Right: The PSNR and running time for reconstructing a single 256256 image at measurement rate 0.10.

€ Although our network runs slower than most of the competing deep learning methods, it still maintains a comparable
time complexity with good speed-accuracy balance.
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® Effects of CSB

Effectiveness of CSB on Setll at MR=0.25 and MR=0.04.

MR=0.25 MR=0.04

(PSNR) (PSNR)
Residual block [13] 33.41 24.47
Inverse residual block [19] 33.38 24.53
Channel shuffle block (CSB) 33.66 24.89

€ To demonstrate the effect of CSB, we replace it with the plain residual block adopted in DR2-Net [5] and the inverted
residual block.
€ The network with CSB outperforms its counterparts by a large margin.
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® Effects of MSCB
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Convergence analysis on network with and without multi-scale convolution block.

@ The curves are based on the average PSNR on Setl1 at measurement rate 0.04 in 84 epochs.
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® Conclusions

® A channel shuffle reconstruction network 1s proposed for CS image reconstruction.

® We first build an initial reconstruction sub-network (IRSN) to generate a preliminary reconstructed image, and then
extend the IRSN by adding a channel shuffle sub-network (CSSN).

® We combine the merits of the inverted residual structure with channel shuffle operation to propose an efficient
channel shuffle block in CSSN.

® We take advantages of multi-scale convolution to fully explore features at different scales.
® The experimental results demonstrate that our proposed method obtains a superior performance.

® [n future work, we intend to study better optimization strategies.
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Thank You!

For any question, please contact:
tinklsm@163.com
wenliwl@tju.edu.cn



