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Cell Type-Independent Mitosis Event Detection Via HSCNFBackground
l Wide application of compressive sensing theory.

Block diagram of single pixel camera Schematic of the spectral imager

Magnetic resonance imaging 
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The complete architecture of our proposed model.
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l The IRSN can adaptively learn the measurement matrix and generate a preliminary reconstructed image.
l The IRSN contains two reshape layers and two fully connected layers.

The architecture of  initial reconstruction sub-network (IRSN).

l IRSN
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The architecture of  channel shuffle sub-network (CSSN).

l The CSSN  takes the output of IRSN as input and reconstruction the final high quality image.
l The CSSN contains the multi-scale convolution block (MSCB) and the channel shuffle block (CSB).

l CSSN
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l The multi-scale convolution block contains four parallel branches to extracte features of different scales from 
the input and fuse features of various scales through the 'concat' layer.

l We adopt two MSCBs at the begin and the end of CSSN, respectively.

l MSCB

The architecture of   multi-scale convolution block (MSCB).
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l CSB

Method

The architecture of  channel shuffle block (CSB).

l Two convolutional layers and one skip connection form an inverted residual structure.
l The slice layer ensures that only part of the information is sent to the inverted residual structure, reducing the 

amount of network parameters, and the shuffle layer realizes information fusion.
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l Deep learning framework: caffe

l Learning rate: begins with 0.0001 and 
stops at 0.00001

l Input: 33×33  image patches

l Optimizer: Adam

l Loss: MSE loss

l Evaluation index: PSNR

l Comparison algorithm:TVAL3 [1], D-AMP [2], 
SDA [3], ReconNet [4], DR2-Net [5], ConvCSNet 
[6], ISTA-Net+ [7], FDC-Net [8] and SCSNet [9]
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l Evaluation Criteria 
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u Our network surpasses all algorithms at MR=0.25, MR=0.10 and MR=0.04.

l Quantitative results 

Mean PSNR results on Set11 at various MRs. The best results are highlighted.

Algorithms
PSNR (dB)

0.25 0.10 0.04 0.01
TVAL3 [1] 27.84 22.84 18.39 11.31
D-AMP [2] 28.17 21.14 15.49 5.19

SDA [3] 24.72 22.43 19.96 17.29
ReconNet [4] 25.54 22.68 19.99 17.27
DR2-Net [5] 28.66 24.32 20.80 17.44

ConvCSNet [6] 26.97 23.30 20.40 17.34
ISTA-Net+ [7] 31.57 26.61 21.31 17.34
FDC-Net [8] 32.15 27.84 24.68 20.64
SCSNet [9] -- 28.48 -- 21.04

Proposed 33.66 28.70 24.89 20.09
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l Visual results

      ReconNet [4]            DR2-Net [5]                ISTA-Net+ [7]             Proposed

     18.19dB                      18.93dB                        19.27dB                         23.95dB

        22.45dB                      26.19dB                         30.03dB                         30.58dB

 Reconstruction results of image “Monarch’” (the top picture) at MR=0.04 and image “flinstones” (the bottom picture) at MR=0.25.
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u Left: Running time of different methods on a test image of size 256 × 256 at various MRs.
u Right: The PSNR and running time for reconstructing a single 256×256 image at measurement rate 0.10.
u Although our network runs slower than most of the competing deep learning methods, it still maintains a comparable 

time complexity with good speed-accuracy balance.

Algorithms
Time Complexity (s)

0.25 0.10 0.04 0.01

TVAL3 [1] 2.9430 3.2230 3.4670 7.7900

D-AMP [2] 27.764 31.849 34.207 54.643

SDA [3] 0.0042 0.0029 0.0025 0.0045

ReconNet  [4] 0.0169 0.0162 0.0169 0.0208

DR 2 -Net  [5] 0.0378 0.0338 0.0342 0.0331

ISTA-Net+ [7] 0.0350 0.0390 0.0365 0.0310

SCSNet  [9] -- 0.1332 -- 0.1050

Proposed 0.0577 0.0579 0.0587 0.0575

l Time complexity



Cell Type-Independent Mitosis Event Detection Via HSCNFExperiment

MR=0.25
(PSNR)

MR=0.04
(PSNR)

Residual block [13] 33.41 24.47

Inverse residual block [19] 33.38 24.53

Channel shuffle block (CSB) 33.66 24.89

l Effects of CSB

u To demonstrate the effect of CSB, we replace it with the plain residual block adopted in DR2-Net [5] and the inverted 
residual block.

u The network with CSB outperforms its counterparts by a large margin.

 Effectiveness of CSB on Set11 at MR=0.25 and MR=0.04. 
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u The curves are based on the average PSNR on Set11 at measurement rate 0.04 in 84 epochs. 

l Effects of MSCB

  Convergence analysis on  network with and without multi-scale convolution block.
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l A channel shuffle reconstruction network is proposed for CS image reconstruction.

l We first build an initial reconstruction sub-network (IRSN) to generate a preliminary reconstructed image, and then 
extend the IRSN by adding a channel shuffle sub-network (CSSN).

l We combine the merits of the inverted residual structure with channel shuffle operation to propose an efficient 
channel shuffle block in CSSN.

l We take advantages of multi-scale convolution to fully explore features at different scales.

l The experimental results demonstrate that our proposed method obtains a superior performance.

l In future work, we intend to study better optimization strategies.

l Conclusions
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Thank You!

For any question, please contact:
 tjnklsm@163.com 
wenliwl@tju.edu.cn 


