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ABSTRACT

Unsupervised Learning (UL) models are a class of Machine
Learning (ML) which concerns with reducing dimensionality, data
factorization, disentangling and learning the representations among
the data. The UL models gain their popularity due to their abilities
to learn without any predefined label, and they are able to reduce
the noise and redundancy among the data samples. However, gen-
eralizing the UL models for different applications including image
generation, compression, encoding, and recognition faces different
challenges due to limited available data for learning, diversity, and
complex dimensions. To overcome such challenges, we propose a
partial learning procedure by utilizing the S-Non Negative Matrix
Factorization (8-NMF), which maps the data into two complemen-
tary subspaces constituting generalized driven priors among the
data. Moreover, we employ a dual-shallow Autoencoder (AE) to
learn the subspaces separately or jointly for image reconstruction
and visualization tasks, where our model performance shows su-
perior results to the literary works when learning the model with a
small amount of data and generalizing it for large-scale unseen data.

Index Terms— Unsupervised Learning, Limited data learning,
Non-negative Matrix Factorization, Autoencoder.

1. INTRODUCTION

Unsupervised Learning (UL) models have the abilities to operate
with unlabeled data to perform dimensionality reduction, and repre-
sentation learning [1, 2]. The UL models include Principal Compo-
nent Analysis (PCA) [3], Independent Component Analysis (ICA),
Autoencoder (AE), Non-negative Matrix Factorization (NMF), Ten-
sor Decomposition (TD), and others [4]. Among all UL models, the
NMEF is the only one that decomposes the data into two non-negative
subspaces: the first one is termed as W latent space and the other is
named as H mixing space [5]. The NMF subspaces constitute rooted
priors to learn data, because they hide the positive features, sparse,
and part-based representations that represent the original data [6].

Recently, there is a demand to generalize Machine Learning
(ML) models for real-life applications, where the data and computa-
tional resources are limited or scarce to carry out learning [7, 8, 9]. In
most cases, the learning procedure in recent works uses more sam-
ples in the training stage than the testing: around 70% of the data
are used for the training and the other for the validation and testing
[10]. Moreover, different works feed ML models by data without
preprocessing and considering learning the relevant representation,
thus the models show more bias and overfitting [11, 12, 13].

To overcome the above issues, we propose a novel method to
learn with limited available data (fewer samples for training than the
testing), utilizing the S-NMF factorization due to its ability in pro-
viding a driven prior among the image data and lead to generalize the
learned model for large-scale unseen data, i.e., out-of-distribution
generalization. The S-NMF maps the data into two positive and
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sparse subspaces that constitute parts of the original data (rooted
representations), thus the representations learning can be facilitated
when building shallow ML models to learn among the data [14].

Since any NMF method requires to impose a factorization rank
that reflects the original data space dimensions [15] to be learned,
we will propose a novel approach to approximate the NMF rank.
Moreover, a shallow AE will be employed to learn the factorized
subspaces partially (partial AE) or jointly using Dual-shallow AE.
The rest of this paper is organized as follows. Section 2 highlights
the S-NMF and the shallow AE. Section 3 shows the proposed learn-
ing methodology. The experimental results will be given in Section
4. Section 5 reports the conclusion and future works.

2. THE 5-NMF AND AE LEARNING
2.1. 5-NMF Factorization

The NMF is a linear dimensionality reduction method that belongs
to Blind Source Separation (BSS) models, due to its ability to learn
part-based representations in an unsupervised way [16]. Also, it
is used in image recognition and reconstruction applications: for a
given image X € R™*™, it decomposes the data matrix as X =
WH + Rs, where W € R™*" represents the bases of the latent
subspace, H € R"*™ contains the mixing subspace, R, is the resid-
ual, and r is the factorization rank. The NMF represents the data
as a product to two subspaces, where the objective function of the
optimization procedure minimizes the residual R by measuring the
mismatch between the original data and the reconstructed subspaces.

The most widely used class of objective function is termed as
B-divergence which comprising the Itakura-Saito (IS) when 8 = 0,
Kulback Leibler (KL) when 8 = 1, and Frobenius norm when § = 2
[14]. The role of such objective functions is to quantify the distance
between the original data and the two factored subspaces, i.e., W and
H [17]. The p-divergence between two matrix elements is given as:

B=0
zlog 2 —w + 7, =1

L(B-1)(@" + (8- 1)@” — Bx&?), otherwise

Z—logZ —1,

dg(z, &) = (D

where d is the divergence, x represents the original data pixel (or
point), Z is the reconstructed pixel after applying the factorization or
learning. When extending the notation from pixel or data point to
matrix (whole image), the S-divergence generalization is given as:

d(X,X) =Y ds(X(ijy, (WrH) i)
(4,9)

@

where dj is the divergence, X is the original image (or data matrix),
X = W,H,, W, and H, are the bases of the latent space and the
coefficients of the mixing space, respectively, and resulting by the
factorization using rank r. To achieve the minimum divergence, the

ICIP 2020

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on October 01,2020 at 08:17:44 UTC from IEEE Xplore. Restrictions apply.



matrix update procedure [18] is followed as:
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where T is the matrix transpose and ® denotes the element-wise
multiplication. The factorization rank can be estimated by using the
Singular Value Decomposition (SVD) to diagonalize the data [19],
then considering the number of the singular values larger than a suit-
able threshold, €. For the experiments described in the following, €

has been defined as: € = AT %7 m, where Tr(X) is the trace,

|| X ||« is the nuclear norm and is obtained from the SVD, and || X ||¢
is the Frobenius norm. The threshold reflects a suitable rank approx-
imation for NMF factorization, because it retains a suitable bound of
the singular values that constitute the ground truth data.

2.2. AE Learning

AE models are unsupervised generative models that can be formed
in shallow or deep architectures, which are utilized in ML to per-
form dimensionality reduction, recognition, and generation tasks
[11]. They also share a similar goal in capturing the hidden structure
among the data, by reconstructing through the samples and benefit-
ing from the advantages of the encoding and decoding stages [20].
For a given image (or data sample) X € R” (D is the input image
dimensions), the encoding stage provides a mapping f : R? — R%,
0 < d < D (d is the bottleneck layer dimensions), to corresponding
encoded data Z = f(X;0.), while the decoding stage provides a
decoding mapping g : R‘i — RP, which reconstructs an approxi-
mation of the input data: X = g(Z;604). Commonly, f and g can be
composed of several encoding decoding stages (deep architecture)
with a high degree of symmetry, in which the mappings of the j®
stage are parameterized by a weight matrix W; and bias b;. The
objective function minimizes the reconstruction error is given as:

Flo, .0, = argmin || X — (0. 0 07) X ||, (5)

where §. = {W,,be} contains the encoder’s weights and biases,
0q = {W4q,bs} comprises the decoder’s weights and biases, and
o is the Hadamard product of two matrices that gives element-wise
commutative product (6 o 64) = (4 o 6.). Such product gives a
realization (in terms of data matrix) that the decoding weights are
similar to the transpose of the ones that are used for encoding, or
trained to be similar, i.e., 64 0.7. The reconstruction loss E,
can be measured by different metrics including Mean Square Error
(MSE), Frobenius norm, /3- divergence, and a recently utilized one
for image applications is the Structure Similarity Index (SSIM) [21].

The main challenge in AE learning lies in finding and generaliz-
ing both encoding and decoding parameters (6. and 64 ), which mini-
mize the reconstruction loss [22]. Especially, when only limited data
available for learning, or when the computational resources restrict
learning from big data sets (as in high order tensor data) [7]. The -
NMF helps the AE to learn reduced sparse, non-negative, and part-
based representations from both W and H subspaces, while feeding
the AE with the original data enforces the AE to learn the data with
noises, redundancy, and costly due to the original data dimensions.
We will show that our approach achieves a minimum reconstruction
loss by comparing the related works, specifically, when generaliz-
ing the trained model for large-scale unseen samples. Also, we will
show how our proposed method allows capturing the rich represen-
tations that retain the fidelity among the factorized and encoded data
to the manifold of the original data.

~
~
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3. THE PROPOSED AE LEARNING METHODOLOGY

The NMF factorization has been utilized in building AE models to
achieve a large-scale generalization. The Non-negative Sparse AE
(NNSAE) proposed in [10] for online learning, enforces the weights
of the AE hidden layer to be positive by using an asymmetric regu-
larization and logistic activation function among neurons. Moreover,
the NNSAE approach has been followed in [23] to build the Non-
negative Constrained AE (NCAE) model for image reconstruction
and classification. The recent work proposed the AE with a simpli-
fied Random Neural Network (AERNN) [24], where a training rule
similar to the NMF used and able to update the model’s weights in a
non-negative way. However, such models do not exploit the NMF as
a data-driven method to disentangle rooted representations and con-
scious prior among the data. Our proposed methodology is charac-
terized from the others by decomposing the data in an unsupervised
way to be in a volume where the noise and redundancy are removed,
and then uses the AE to learn the representations. Thus, the learned
model is generalized for a large scale unseen data.

The concept of consciousness prior has been proposed for Nat-
ural Language Processing (NLP) applications, to combine differ-
ent priors for disentangling abstract factors to be learned in further
stages [25]. Such priors are seen as a bottleneck from which the ex-
tracted factors or representations have to proceed for further process-
ing, and lead to generalization improvement for ML and AE models.
Following similar footprints of [25], we employ the 5-NMF to de-
rive consciousness priors among the data, followed by learning each
B-NMF subspace using a shallow AE for each. The subspace W
offers a prior among the data’s hidden structure, while the H space
contains a prior of the mixing coefficients that reconstruct the data.

To show the performance of our proposed work, we employ both
MNIST digits and MNIST fashion data sets [26, 27]. Each com-
prises 60k images for training and 10k for the testing stage, divided
in 10 classes with image size of 28 x 28. However, to challenge the
generalization ability of our model to large unseen data only 10k im-
ages will be trained, and the testing performance will be measured
on the other data set samples. The proposed methodology is divided
in the following two steps:

e The initial stage includes image factorization to extract the
B-NMF subspaces (W, H), utilizing the rank identification
threshold in (¢) and setting 8 = 1. The rank has been es-
timated using a subset of the training set (1k images from
each class) for each the data sets, to be generalized among
the whole data samples. The first and third classes from both
data sets have been employed to measure the rank threshold
robustness, then the Frobenius norm has been applied to mea-
sure the factorization loss acquired by the 5-NMF, i.e., the
difference between the factorized data and the original one.
We obtained » = 16 and r = 15 (for the first and third class,
respectively) from the MNIST digits, and » = 16 and r = 17
(for the first and third class, respectively) from the MNIST
fashion data set. The averaged factorization loss among all
testing samples (5k images from each class) did not exceed
0.017. Similarly, the rank is approximated among all classes
in both data sets, where the generalized rank (taken from ¢)
r = 16 for both data sets due to their image size similarity.

The second stage is dedicated to the AE learning among the
B-NMF subspaces, separately by a shallow AE, or jointly by
a dual-shallow AE (Dual-AE) as depicted in Fig. 1. Each AE
for either separate or joint learning shares the same number of
layers: one layer for each encoder, decoder, and a bottleneck
layer. The bottleneck’s size still an open problem in the AE
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learning, thus we followed [28] approach to identify the re-
quired number of neurons, where a discussion about the size
of the bottleneck of the different data sets given therein. The
method in [28] is implemented by halving the feature vector
dimensions and imposing the number as a bottleneck size. In
our experiments, the feature dimensions are 28 x r = 448,
but we expand the bottleneck size for the W-AE (see Fig. 1)
to 250 neurons due to its sparsity nature, and we reduce it
to 200 neurons to the H-AE (196 neurons proposed in [28]).
For the MNIST fashion, because the class complexity, we just
expand the size to 400 and 300 for the W-AE and H-AE, re-
spectively. Finally, all AE experiments have been fixed un-
der 2000 epochs, saturated liner encoder and decoder transfer
function, o = 0.0001 and sparsity regularizer with coeffi-

cient = 0.01.
AE
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w
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©

Fig. 1: The three proposed AE schemes, where (a) W-AE in the top,
(b) H-AE in the middle, and (c) Dual-AE in the bottom.

4. PERFORMANCE EVALUATION

4.1. Experimental Results

We considered three scenarios indicated as (i) W-AE and (ii) H-AE
when only W and H subspaces are learned, respectively, and (7ii)
Dual-AE when both the subspaces are jointly learned to reconstruct
the data, see Fig. 1. We employed both MNIST data sets to compare
our method with the literature in terms of MSE error, which is com-
monly used in shallow AE learning. Besides, to show the ability of
our method to preserve the original data structure, we also employed
the SSIM index. For more details about the SSIM we refer to [21].

(i) W-AE: The latent space W hides sparse, non-negative and
part-based representations, which can be obtained from the 5-NMF
and learned by the AE to reconstruct the data. The W space contains
a lot of sparse values that require a wider bottleneck layer than H-
AE (250,400 neurons for the MNIST digits and MNIST fashion,
respectively). We measured to which extent that W space can be
learned separately, while the H space is used for the reconstruction
(Fig.1 (a)). Moreover, the learning complexity can be carried out at
O(m x r) where m is the row space dimension and r is the data
rank, instead of learning at O(m x n) where n is the column space
dimension. Table 1 shows the reconstruction performance of the W-
AE model.
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Training Testing
W-AE SSIM MSE SSIM MSE
MNIST Digits 0.935 | 0.005 | 0.923 | 0.005
MNIST Fashion | 0.760 | 0.021 | 0.759 | 0.022

Table 1: Reconstruction performance of W-AE model.

(ii) H-AE: The mixing space H is considered a combiner to re-
construct the original data, where it is multiplied by W space for the
reconstruction purpose. Also, it is less sparse than W space, thus we
reduce the number of neurons in the AE bottleneck layer to 200 and
350 for the MNIST digits and MNIST fashion, respectively. As in
learning W space, we measured to which extent that H space can
be learned, while keeping W space as identity for the sake of recon-
struction (Fig. 1b). The learning complexity carried out in O(r x n),
instead of learning at O(m x n). Table 2 shows the reconstruction
performance of the H-AE based on the used indicators in Table 1.

Training Testing
H-AE SSIM MSE SSIM | MSE
MNIST Digits 0.986 | 0.004 | 0.961 | 0.005
MNIST Fashion | 0.888 | 0.006 | 0.872 | 0.007

Table 2: Reconstruction performance of H-AE model.

(iii) Dual-AE: In this scenario both W and H spaces are learned
separately to reconstruct the data jointly utilizing a dual AE: the
model is fully automated and avoids keeping W or H as identities
(as in the W-AE or H-AE) for the reconstruction. Moreover, the
learning complexity for the Dual-AE scenario is O(m X r + 7 X
n). Accordingly, the learning process can be facilitated and imple-
mented among different machines; we carried out the learning for
the Dual-AE in two separated machines with core :7-CPU at each
one, where the learning complexity was O(m x r) and O(r x m)
for the first and second CPU, respectively. Table 3 highlights the
reconstruction performance of the Dual-AE model.

Training Testing
Dual-AE SSIM MSE SSIM | MSE
MNIST Digits 0.910 | 0.009 | 0.900 | 0.010
MNIST Fashion | 0.778 | 0.017 | 0.767 | 0.018

Table 3: Reconstruction performance of Dual-AE model.

To show the reconstruction ability of the W-AE, H-AE, and
Dual-AE, Fig. 2 depicts the reconstruction differences between each
AE with respect to the ground truth data. As it can be noticed from
Fig. 2 and the above tables, that the H-AE outperforms the others
AE in terms of data reconstruction.

Eventually, to show the fidelity of the factorized and the encoded
data to the original one, in terms clustering and preserving the inter-
classes variations, Fig. 3 shows the t-SNE [29] embedding of the
original MNIST digits data set, the factorized space W of the (-
NMEF, and the latent (bottleneck) space of the W-AE model. As it can
be concluded from Fig. 3, that the factorized space W and the AE’s
latent space maintain the discriminating features to be clustered, and
both show the same fidelity to the original data set; preserving the
clustering properties and avoiding classes’ shuffling (i.e., realizing
an invariant transform). Finally, the computational complexity of
the t-SNE is reduced from O(DN?) (Fig. 3a) where D is the di-
mensions of each image (for the MNIST samples D = 28 x 28) and
N is the number of samples in the data set to O(d, N?) (Fig. 3b)
where d, is the W space dimensions d,, = 28 x 16, See Section 3.
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(a) MNIST Digits Reconstruction
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(b) MNIST Fashion Reconstruction

Fig. 2: The reconstruction of MNIST data sets (testing samples) where GT represents the Ground Truth samples, W-AE represents the W-AE
reconstruction, H-AE represents the H-AE reconstruction, Dual-AE represents the reconstruction of dual AE learning.
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Fig. 3: The t-SNE of the original MNIST digit data set, W space of the factorized data set, and the latent (bottleneck) space of the W-AE.

40000 samples have been employed for each sub-fig.

4.2. Recent works comparison

The performance comparison of the basic recent deep UL models
based on the NMF and AE learning is reported in Table 4. It also
comprises: Stacked AE with Restricted Boltzmann Machine (SAE-
RBM) [30], Non-Negative Sparse AE (NNSAE) [10], fold-AE [31],
Group Sparse AE (GSAE) [32], AE Spiking Neural Networks (AE-
SNN) [28], Structuring AE (SAE) [33], and Non-Negative AE with
Simplified Random Neural Network (NNAE-sRNN) [24]. Every
work except [10] and [31] employed 60k training samples and 10k
testing to carry out the learning and performance evaluation. In [10]
only 10k training samples were used and 50k considered as testing
samples, and in [31] only a mini data set of 200 images were used.
We followed [10] and employed 10k samples for the training stage
and the other for the testing. To show a fair comparison, we adjusted
the size of the data set in the range [200, 10000] with 70% training
size and the other for the testing, to demonstrate how the testing loss
can be saturated. As it can be noticed from Fig. 4, the testing loss
shows a minimum around a data set size of 1000, but it is saturated
around a data size of 8000 — 10000, which meets the specifications
of our training size (See section 3). Finally, our method outperforms
the others in terms of obtaining the minimum reconstruction loss.

Testing performance
80 g p

MSE loss x1000
IS )
S 3

N
=)

0
0 2000 4000 6000

Data set size

Fig. 4: The Testing loss performance as a function of data set size.

8000 10000
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Training MSE Testing MSE
MNIST MNIST
Method Digits | Fashion | Digits | Fashion
SAE-RBM [30] 0.823 NA NA NA
NNSAE [10] 0.012 NA 0.015 NA
Fold-AE in [31] 0.178 NA 5.929 NA
Group Sparse-AE [32] 1.10 1.10 NA NA
AE-SNN [28] 0.110 | 0.150 | 0.122 | 0.178
Structuring-AE [33] 0.025 | 0.014 NA NA
NNAE-sRRNN [24 0.024 NA NA NA
Our proposed W-AE | 0.005 | 0.021 | 0.005 | 0.022
Our proposed H-AE 0.004 | 0.006 | 0.005 | 0.007
Our proposed Dual-AE | 0.009 | 0.017 | 0.010 ] 0.018

Table 4: Comparison with recent methods in the literature, including
deep unsupervised learning methods [32, 28, 33, 24].

5. CONCLUSIONS

We proposed an approach based on unsupervised data factorization
and encoding, to be utilized for ML tasks as in image reconstruc-
tion and visualization. We used the 3-NMF to reduce the data di-
mensionality and obtain both latent and mixing spaces W and H,
respectively. We trained a shallow AE at each space, and used a
dual-shallow AE to learn from both spaces jointly. The performance
analysis shows that our proposed work obtained the minimum re-
construction loss when it is compared with the relevant works, espe-
cially when learning the model with limited available data (a small
set for training but large for testing). In future works, we plan to
investigate our proposed work for other ML tasks such as regression
or classification. Also, we plan to extend the dual shallow AE to
learn from tensor data with order > 2 (multi-way) as in the RGB or
hyper-spectral image learning, where we need n-way AE.
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