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Introduction

Introduction

Convolutional neural networks (CNNs) have achieved
state-of-the-art performance in many computer vision tasks.

Figure: Example of a CNN used in a computer vision task1.

1Voulodimos et al. 2018.
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Introduction

Introduction

CNNs usually process RGB pixels, but image data are often
stored in a compressed format, like JPEG, PNG and GIF.

Figure: Example of a CNN used in a computer vision task2.

2Voulodimos et al. 2018.
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Introduction

Introduction

A costly decoding process is required for obtaining RGB images.

RGB Image DCT Coe cients

Figure: A RGB image and its DCT coefficients from compressed data.
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Introduction

Introduction

A costly decoding process is required for obtaining RGB images.

RGB Image DCT Coe cients

Figure: A RGB image and its DCT coefficients from compressed data.

What if CNNs are designed to process
JPEG compressed data?
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3Gueguen et al. 2018.
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Related Work

Related Work

The potential of the JPEG compressed domain has been widely
explored by many conventional image processing techniques ...
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Related Work

Related Work

The potential of the JPEG compressed domain has been widely
explored by many conventional image processing techniques
but exploited by only a handful of deep learning methods:

Gueguen et al. 2018: architectural modifications to the
ResNet-50 network to accommodate DCT coefficients from
JPEG images;

Deguerre, Chatelain, and Gasso 2019: adaptations to the
Single Shot MultiBox Detector (SSD)4 to accommodate
block-wise DCT coefficients as input;

Ehrlich and Davis 2019: reformulation of the ResNet
architecture to perform its operations directly on the JPEG
compressed domain.

4Liu et al. 2016
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Learning from Compressed JPEG Images

Base Work

Our starting point is the work of Gueguen et al.5

Modifications on ResNet-50 to accommodate DCT inputs:

1 the first stage is skipped;

2 the amount of input channels of the second and third
stages are changed to ensure that their number of output
channels are equal to the original ResNet-50;

3 the strides of early blocks from the second stage are
decreased in order to mimic the increase in size of the
receptive fields in the original ResNet-50.

5L. Gueguen et al. “Faster Neural Networks Straight from JPEG”. In:
NIPS. 2018, pp. 3937–3948.
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Learning from Compressed JPEG Images

Base Work
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Learning from Compressed JPEG Images

Drawbacks and Opportunities

Less steps but more miles! And now?

Drawbacks ...
The changes introduced by Gueguen et al.6 in ResNet-50 raised
its computation complexity and number of parameters.

... and Opportunities

To alleviate the network complexity, we use a Frequency Band
Selection (FBS) to select the most relevant DCT coefficients.

6L. Gueguen et al. “Faster Neural Networks Straight from JPEG”. In:
NIPS. 2018, pp. 3937–3948.
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Learning from Compressed JPEG Images

Novelty and Contributions

After and Now
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Learning from Compressed JPEG Images

Novelty and Contributions

Our Approach

Frequency Band Selection (FBS)

High frequency data have little visual effect on the image.

Only the n lowest frequency coefficients are retained.

The second stage is changed to have 3n input channels.
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Experiments and Results

Experimental Protocol

Dataset

Subset of the ImageNeta dataset:

268,773 images from 211 classes;

215,018 (80%) of training images;

53,755 (20%) of test images;

Different difficulty levels:

fine-grained: 211 of the 1000
classes from ImageNet;
coarse-grained: 211 classes
grouped into 12 categories;

Smallest side resized to 256 pixels;

Crop size of 224x224 pixels.

aRussakovsky et al. 2015.

Figure: The diversity of data
in ImageNet dataset.
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Experiments and Results

Experimental Protocol

Implementation Details

Table: The hyperparameters used for training all the networks.

Parameter Options
Batch size 128

Initial learning rate 0.05

Total number of epochs 120

Step-decay scheduler setting LR divided by 10 every 30 epochs

Data augmentation operations random crops and horizontal flips
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Experiments and Results

Experimental Results

Network Complexity

Table: Computational complexity (GFLOPS) and number of parameters
for the original ResNet-50 with RGB inputs and networks using DCT.

Approach
Input

GFLOPs Params
Channels

ResNet-50 + RGB7 3x1 3.86 25.6M
ResNet-50 + DCT8 3x64 5.40 28.4M

ResNet-50 + DCT + FBS 3x32 3.68 26.2M
ResNet-50 + DCT + FBS 3x16 3.18 25.6M

7He et al. 2016.
8Gueguen et al. 2018.
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Experiments and Results

Experimental Results

Impact of the Difficulty Level of Classification Tasks

Table: Accuracy (%) of the original ResNet-50 network and its modified
versions for image classification tasks with different difficulty levels.

Approach
Classification Task
Fine Coarse

(211 Classes) (12 Classes)

ResNet-50 + RGB (3x1)9 76.28 96.49
ResNet-50 + DCT (3x64)10 70.28 94.15

ResNet-50 + DCT + FBS (3x32) 69.79 94.53
ResNet-50 + DCT + FBS (3x16) 68.12 93.92

9He et al. 2016.
10Gueguen et al. 2018.
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Experiments and Results

Experimental Results

Impact of the Image Resolution

Table: Accuracy (%) for the original ResNet-50 with RGB inputs and
networks using DCT as input for images with different resolutions.

Approach
Image Resolution

32 64 128 256

ResNet-50 + RGB (3x1)11 81.82 90.39 94.56 96.49
ResNet-50 + DCT (3x64)12 72.72 82.06 90.32 94.15

ResNet-50 + DCT + FBS (3x32) 71.83 82.22 90.78 94.53
ResNet-50 + DCT + FBS (3x16) 70.35 81.35 90.16 93.92

11He et al. 2016.
12Gueguen et al. 2018.
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Experiments and Results

Experimental Results

Impact of the JPEG Quality Level

Table: Accuracy (%) for the original ResNet-50 with RGB inputs and
networks using DCT as input for images with different JPEG qualities.

Approach
JPEG Quality

25 50 75 100

ResNet-50 + RGB (3x1)13 95.78 95.98 96.09 96.49
ResNet-50 + DCT (3x64)14 93.84 94.02 94.50 94.15

ResNet-50 + DCT + FBS (3x32) 93.63 93.97 94.20 94.53
ResNet-50 + DCT + FBS (3x16) 92.69 93.26 93.66 93.92

13He et al. 2016.
14Gueguen et al. 2018.
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Conclusions

Remarks

Conclusions

Remarks

Evaluation of the potential of CNNs designed for JPEG data.

Several aspects of the work of Gueguen et al.15 were studied.

Frequency Band Selection (FBS) to alleviate complexity.

Experiments were conducted on a subset of the ImageNet.

Classification tasks with different difficulty levels.
Different spatial resolutions and JPEG quality settings.

Networks were robust to changes in the JPEG quality but
susceptible to variations in the spatial resolution.

FBS proved to be effective in reducing network complexity.

15Gueguen et al. 2018.
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Conclusions

Future Work

Evaluation of other CNNs designed for JPEG images.

Evaluation of our network on the whole ImageNet dataset.

Evaluation of smarter strategies for selecting DCT coefficients.

Extension of our ideas to networks devised for MPEG videos.
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