BIPARTITE SUBGRAPH DECOMPOSITION FOR CRITICALLY SAMPLED WAVELET FILTERBANKS ON ARBITARY GRAPHS

Introduction

Why graph wavelets?

- Graph: describe data structures in various scenarios
- Key problem: graph wavelets for compact representation
- Why bipartite subgraph decomposition?
- Limit of recent works: GraphBior [1], only for bipartite graph
- Solution for non-bipartite graph: decompose into bipartite subgraphs, see *Fig. 1* **Problem Statement**
- Bipartite subgraph decomposition for compact signal representation
- Previous methods [2][3][4] neglect relation between metrics and energy compactness
- Proposed method: a) minimize the mid-frequency multiplicity; b) maximize the structure preservation

Input Graph G = (V, E)

1st level bipartition $B_1 = (L_1, H_1, E_1)$

Graph Wavelet Filterbanks

Graph Spectrum and Spectral Filter

- Laplacian matrix L = D W; D is degree matrix, W is adjacency matrix
- Normalized form $\mathcal{L} = D^{-1/2} L D^{-1/2}$: eigenvalues { λ_i } within range [0, 2], interpreted as graph spectrum
- Spectral Filter: defined with spectral kernel $h(\lambda)$
- **Critically Sampled Wavelet Filterbanks** for **Bipartite Graph-Signal**
- Flowchart *Fig. 2*: decompose *f* into low-pass and high-pass components
- H and G: based on frequency folding, with spectral kernels in *Fig. 3*
- $\lambda = 1$: minimal energy discrimination
- Bipartite subgraph decomposition required for non-bipartite graph-signals

Fig.2 Two-channel wavelet filterbanks on bipartite graph B = (L, H, E)

Jin Zeng[‡], Gene Cheung^{*}, Antonio Ortega[#]

[†]The Hong Kong University of Science and Technology, Hong Kong; *National Institute of Informatics, Tokyo, Japan; [#]University of Southern California, Los Angeles, CA, USA

- Goal: compact representation of signals in original graph G projected to wavelet domain of bipartite subgraph G'
- Criteria: minimum mid-frequency multiplicity & maximum structure preservation

Minimum Mid-Frequency Multiplicity

- Multiplicity of $\lambda = 1$ is equivalent to null(W)
- Measurement: rank(W)

Maximum Structure Preservation

solved by KL Divergence.

References: [1] S.N. and A.O. "Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs," TSP'13. [2] S.N. and A.O. "Perfect reconstruction two-channel wavelet filter banks for graph structured data," TSP'12. [3] S.N. and A.O. "Multi-dimensional separable critically sampled wavelet filterbanks on arbitrary graphs," ICASSP'12. [4] H.N. and M.Do "Downsampling of signals on graphs via maximum spanning trees," TSP'15.

2nd level bipartition $B_2 = (L_2, H_2, E_2)$

• Table 1 exhibits high multiplicity of $\lambda = 1$ for first level bipartite subgraph using Harary's [2] in real-

raph	Vertex number	Multiplicity		
traffic graph	2642	428		
at of Arms	1059	103		
erature Graph	208	32		

How to measure structure preservation?

• **KL Divergence**: measure graph difference

• GMRF w.r.t. $G \sim \mathcal{N}(\mu, \Sigma), \Sigma^{-1} = L + \delta I;$

G' ~ $\mathcal{N}_{R}(\mu_{R}, \Sigma_{R}), \Sigma_{R}^{-1} = L_{R} + \delta I$:

$$\mathcal{N}_{R} = \frac{1}{2} \left(\operatorname{tr}(\boldsymbol{\Sigma}_{R}^{-1}\boldsymbol{\Sigma}) + (\mu_{R} - \mu)^{T}\boldsymbol{\Sigma}_{R}^{-1}(\mu_{R} - \mu) - N + \ln\left(\frac{|\boldsymbol{\Sigma}_{R}|}{|\boldsymbol{\Sigma}|}\right) \right)$$

Fig. 6 KL Divergence vs Max-cut

remove one edge

Max-cut

dense area: small Dk sparse area: large Dk

undistinguishable

Algorithm (MFS)

- maximizing rank(W) \neq minimizing DKL
- frequency and Structure (MFS), summed up as follows:

Input: graph \mathcal{G} , decomposition level k **Output:** edge-disjoint bipartite graphs $\mathcal{B}_1, ..., \mathcal{B}_k$

- 1: **for** i = 1:k **do**

- 7: end for

Experiments

- the signal with n% largest wavelet coefficients

forms existing schemes in all different graphs.

	Т	0.8T	1.2T	1.4T	k=7	k=8	k=9
Harary's[2]	1.65	1.43	0.82	0.82	0.76	0.64	1.34
MCWMC[3]	1.35	0.74	1.17	1.24	1.56	1.62	2.06
MST[4]	1.35	0.16	2.24	1.38	0.93	0.64	1.91

• **Proposed algorithm**: Bipartite Subgraph Decomposition Optimizing Mid-

Find connected components in \mathcal{G} . For each component, put the starting vertex in set 1. Use breadth-first search to explore other vertices, and choose the proper set by jointly comparing rank($\mathbf{W}_{1,2}$) and D_{KL} . After all vertices are discovered, bipartite graph \mathcal{B}_i is given. Update \mathcal{G} by removing edges in \mathcal{B}_i .

• Steps: 1) bipartite subgraph decomposition; 2) GraphBior[1]; 3) reconstruct

• China temperature graph: monthly average temperature from Oct.09 to May12, vertices connected to neighbors with distance < threshold T

• Table 2: Average gain of proposed MFS over competing schemes in SNR(dB) for graphs with different connections: column $2\sim5$, threshold from T to 1.4 T; column 6~8, vertices connected to knn with k = 7, 8, 9. It shows MFS outper-

