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Introduction

Proposed Method

e Goal: compact representation of signals in original graph G projected to wavelet domain
of bipartite subgraph G’

Algorithm (MFS)

¢ maximizing rank(W) # minimizing Dk

Why graph wavelets?

e Graph: describe data structures 1n various scenarios . . o o .
e Proposed algorithm: Bipartite Subgraph Decomposition Optimizing Mid-

e Criteria: minimum mid-frequency multiplicity & maximum structure preservation frequency and Structure (MFS), summed up as follows:

e Key problem: graph wavelets for compact representation

Why bipartite subgraph decomposition?
Input: graph G, decomposition level k
Output: edge-disjoint bipartite graphs Bi,...,5x
1: for:=1:k do
Find connected components in G.
For each component, put the starting vertex in set 1.
Use breadth-first search to explore other vertices, and choose
the proper set by jointly comparing rank(W 2) and Dxr.
After all vertices are discovered, bipartite graph B; is given.

e [imit of recent works: GraphBior [1], only for bipartite graph Minimum Mid-Frequency Multiplicity

e Solution for non-bipartite graph: decompose into bipartite subgraphs, see Fig. /

Problem Statement

Fig.4 How mid-frequency multiplicity
affects compact representation

2:
e Table 1 exhibits high multiplicity of A =1 for first 3.
level bipartite subgraph using Harary’s [2] 1n real- 4

e Bipartite subgraph decomposition for compact signal representation
world cases.

® Previous methods [2] [3] [4] ne- Fig. 1 Example of Bipartite Subgraph Decomposition

Multiplicity of

glect relation between metrics A =1 Compact Rep Graph Vertex number | Multiplicity Update G by removing edges in B;.
and energy compactness - Minnesota traffic graph 2642 428 : end for

e Proposed method: a) minimize e e Energy at Yale Coat of Arms 1059 103
the mid-frequency multiplici- subspace A =1 mid-freq China Temperature Graph 208 32

ty; b) maximize the structure
preservation

Experiments

st level bipartition
Bi1 = (L1, Hi, E1)

2nd level bipartition
B2 = (L2, H2, E2)

Input Graph

G (v By e Multiplicity of A =1 1s equivalent to null(W)

e Steps: 1) bipartite subgraph decomposition; 2) GraphBior[1]; 3) reconstruct
the signal with n% largest wavelet coefficients

e Measurement: rank(W)

e China temperature graph: monthly average temperature from Oct.09 to

Maximum Structure Preservation May12, vertices connected to neighbors with distance < threshold T

Graph Wavelet Filterbanks

: - How to measure structure preservation?
Fig. 5 How structure preservation leads P

to compact representation e KL Divergence: measure graph difference

Graph Spectrum and Spectral Filter ¢ GMRF w.r.t. G ~ AV, %), X'=L + dI;

Laplacian matrix L=D - W; D is d trix, W is adj tr = SPRIONmEIES | g < | T e
aplacian matrix L =D - W; D is degree matrix, W is adjacency matrix , 1_ . LA AP 4
* -dp ’ g > ] Y (assume as GMRF w.r.t. G) G’ ~ M(UR, ZR), "= Lr + 61 L % — e

. Normalized form £=D"?LD"*: eigenvalues {\;} within range [0, 2], interpreted
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as graph spectrum
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e Table 2: Average gain of proposed MFS over competing schemes in SNR(dB)
— N +1In ('Eﬁ‘ )) for graphs with different connections: column 2~35, threshold from T to 1.4 T;

column 6~8, vertices connected to knn withk =7, 8, 9. It shows MFS outper-
forms existing schemes 1n all different graphs.

« Spectral Filter: defined with spectral kernel h(L)
Critically Sampled Wavelet Filterbanks — for Bipartite Graph-Signal

Energy compaction at low frequencies

Advantage over Max-cut

« Flowchart Fig. 2: decompose finto low-pass and high-pass components
Fig. 6 KL Divergence vs Max-cut

« Hand G: based on frequency folding, with spectral kernels in Fig. 3

« A= 1: minimal energy discrimination

« Bipartite subgraph decomposition required for non-bipartite graph-signals

Fig.2 Two-channel wavelet filterbanks
on bipartite graph B = (L, H, E)

el
;

Fig.3 Spectral kernels of HO H1 in graphBior
2 . . .

fhigh

¢ [3][4] use max-cut as measurement

® [ig.6 shows max-cut’s dilemma can be

solved by KL Divergence. dense area: small D«

sparse area: large DkL
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