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Why graph wavelets? 

 Graph: describe data structures in various scenarios 

 Key problem: graph wavelets for compact representation 

Why bipartite subgraph decomposition? 

 Limit of recent works: GraphBior [1], only for bipartite graph 

 Solution for non-bipartite graph: decompose into bipartite subgraphs, see Fig. 1 

Problem Statement  

  Bipartite subgraph decomposition for compact signal representation 

 Previous methods [2][3][4] ne-

glect relation between metrics 

and energy compactness 

 Proposed method: a) minimize 

the mid-frequency multiplici-

ty; b) maximize the structure 

preservation   

 Goal: compact representation of signals in or iginal graph G projected to wavelet domain 

of bipartite subgraph G’ 

 Criteria: minimum mid-frequency multiplicity & maximum structure preservation 

 

Minimum Mid-Frequency Multiplicity 

 

 Table 1 exhibits high multiplicity of  λ = 1 for first 

level bipartite subgraph using Harary’s [2] in real-

world cases. 

 Multiplicity of  λ = 1 is equivalent to null(W) 

 Measurement: rank(W) 

 

Maximum Structure Preservation 

How to measure structure preservation? 

 KL Divergence: measure graph difference 

 GMRF w.r.t. G ~N (μ, Σ), Σ-1= L + δI;  

   G’ ~ NR(μR, ΣR), ΣR
-1= LR + δI: 

Advantage over Max-cut 

 [3][4] use max-cut as measurement  

 Fig.6 shows max-cut’s dilemma can be 

solved by KL Divergence. 

 

 maximizing rank(W) ≠ minimizing DKL 

 Proposed algorithm: Bipar tite Subgraph Decomposition Optimizing Mid-

frequency and Structure (MFS), summed up as follows: 

Graph Spectrum and Spectral Filter 

 Laplacian matrix L = D - W; D is degree matrix, W is adjacency matrix 

 Normalized form L = D-1/2 LD-1/2 : eigenvalues {λi} within range [0, 2], interpreted 

as graph spectrum 

 Spectral Filter: defined with spectral kernel h(λ) 

Critically Sampled Wavelet Filterbanks — for Bipartite Graph-Signal 

 Flowchart Fig. 2: decompose f into low-pass and high-pass components  

 H and G: based on frequency folding, with spectral kernels in Fig. 3 

 λ = 1: minimal energy discrimination  

 Bipartite subgraph decomposition required for non-bipartite graph-signals 

 Steps: 1) bipartite subgraph decomposition; 2) GraphBior[1]; 3) reconstruct 

the signal with n% largest wavelet coefficients 

 China temperature graph: monthly average temperature from Oct.09 to 

May12, vertices connected to neighbors with distance < threshold T 

 Table 2: Average gain of proposed MFS over competing schemes in SNR(dB) 

for graphs with different connections: column 2~5, threshold from T to 1.4 T; 

column 6~8,  vertices connected to knn with k = 7, 8, 9. It shows MFS outper-

forms existing schemes in all different graphs. 
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 T 0.8T 1.2T 1.4T k=7 k=8 k=9 

Harary’s[2] 1.65 1.43 0.82 0.82 0.76 0.64 1.34 

MCWMC[3] 1.35 0.74 1.17 1.24 1.56 1.62 2.06 

MST[4] 1.35 0.16 2.24 1.38 0.93 0.64 1.91 

Contact: Jin Zeng, jzengab@ust.hk 

 Introduction  Proposed Method   Algorithm (MFS) 

 Experiments 

Graph Vertex number Multiplicity 

Minnesota traffic graph 2642 428 

Yale Coat of Arms 1059 103 

China Temperature Graph 208 32 

 Graph Wavelet Filterbanks 


