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Model

Observations follow a general linear model (GLM) as

x = Vθ + n

where
x ∈ Rm

V ∈ Rm×r [Orthonormal matrix]
θ ∈ Rr [unknown and ∼ N (0, I)]
n ∈ Rm, and nominally∼ N (0, σ2I)

N samples in total are available and all samples are put in matrix
X = {x1, ..., xN}.
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Problem Definition

The objective is to find r principal loading vectors such that they can
explain most of the data variance.

ûk = arg max
u

Var(u>X), s.t.U>U = I, k = 1, · · · , r ,

Or equivalently, using projection framework

Û = arg min
U
‖X−UU>X‖F s.t. U>U = I.

The solution of above problems is the first r eigenvectors of the sample
covariance matrix XX>.
However, this solution is not robust against noise deviation!
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Robust PCA

The PCA problem is considered as a rank minimization problem using the
model1

X = L + S + ε,

where L and S are low rank and sparse matrices, respectively. Therefore,
they are given by

L̂, Ŝ = arg min
L,S
‖L‖∗ + λ1‖S‖1 + ‖X− L− S‖F .

where ‖L‖∗ denotes the nuclear norm of L which measures the sum of
singular values of L.
Still sensitive due to using non robust norms.

1. Candes et al., 2011: Robust principal component analysis?
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From KL divergece to α−divergence

Using the probabilistic PCA point of view, the solution of classical PCA is
the maximum likelihood solution when a generative linear model and
multivariate Gaussian noise is used. It is well known that when (N →∞)

β̂ML = arg max
β

1
N

N∑
i=1

log (f (xi ,β)) = arg min
β

KL (f (x,β∗), f (x,β)) .

As an alternative we propose to use the α−divergence defined as

Dα (g(y, λ) ‖ f (y, ω)) = 1
α(α− 1)

[∫
g(y, λ)αf (y, ω)1−αdy− 1

]
,

to develop the estimator. When α→ 1, Dα(.)→ KL(.).
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Proposed Robust PCA

In order to estimate the mean and the covariance of data we have

µ̂, Σ̂ = arg min
µ,Σ

Dα (ge(x) ‖ N (x|µ,Σ)) ,

where ge(x) = 1
N
∑N

n=1 δ(x− xn) is the empirical density and

N (x|µ,Σ) = 1
(2π)m/2|Σ|1/2 exp

{
− 1

2(x− µ)T Σ−1(x− µ)
}
,

Now with taking derivatives with respect to the mean and the covariance
and putting them equal to zero we have:

µt =
∑N

n=1 w t
nxn∑N

n=1 w t
n
,
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Proposed Robust PCA

Σt =
∑N

n=1 w t
n(xn − µt−1)(xn − µt−1)>∑N

n=1 w t
n

.

w t
n shows the weight of xn at step t in estimation of parameters and can

be computed by w t
n = exp{−1−α

2 (xn − µt−1)>(Σt−1)−1(xn − µt−1)}.
Remarks:

If data is not zero mean, first we should make it zero mean.
The method is tunable by α and for α < 1 the robustness property
can be achieved.
The method is an iterative algorithm which converges fast and
depends on initial estimate.
Number of observations (N) is more than the data dimension (m).

8 / 10



Results
Scatter plot of simulated data (blue, orange and yellow circles show the
original data, structured and unstructured outliers, respectively) and
estimated principal loading vectors using classical and robust PCA
algorithm.
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Results

Background-Foreground (FB) separation task on airport data (top row is
the background and bottom row is the foreground ). First 200 frames with
the size of 72× 88 is used. Results on frame number 8:

From Left: Original frame, PCA, GoDec, Proposed.
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