

Lossless Video Coding Based on Probability Model Optimization Utilizing Example Search and Adaptive Prediction

Kyohei Unno^{†‡}, Koji Nemoto[‡], Yusuke Kameda[‡], Ichiro Matsuda[‡], Susumu Itoh[‡], Sei Naito[†]

† KDDI Research, Inc.

‡ Tokyo University of Science

Presenter : Kyohei Unno

Background

Conventional video coding methods typically consist of two stages.

- 1. De-correlation (e.g. Prediction to get residuals)
- 2. Entropy coding (e.g. Arithmetic coding)
- In general, probabilities of de-correlated signals are modeled as singlepeaked symmetric functions centered at zero.

- Proposed method estimates probability of pel values directly with multipeaked Gaussian mixture model (GMM) pel-by-pel.
- Center position $f_{k,m}$ and reliability $d_{k,m}$ (related to variance) of each Gaussian are estimated by example search and adaptive prediction.

- *M* pels $\{q_{k,1}, ..., q_{k,M}\}$ that have smaller template matching costs are collected as examples from the search window.
 - The search window is set to both the current frame and the previous frame.

- Center position $f_{k,m}$ and reliability metric $d_{k,m}$ for each gaussian are given by the examples and the corresponding cost, respectively
 - Center position $f_{k,m}$: Example pel value with local mean compensation.

$$f_{k,m} = f_{t-\tau}(\boldsymbol{q}_{k,m}) - \mu_{t-\tau}(\boldsymbol{q}_{k,m}) + \mu_t(\boldsymbol{p}_k)$$

Pel value of $q_{k,m}$ Local means of neighboring pels at p_k and $q_{k,m}$

• Reliability metric $d_{k,m}$: Template matching cost of the *k*-th example.

$$d_{k,m} = \left[\sum_{i=1}^{12} w_i \cdot \left(f_{t-\tau}(\boldsymbol{q}_{k,m} + \boldsymbol{r}_i) - \mu_{t-\tau}(\boldsymbol{q}_{k,m}) - f_t(\boldsymbol{p}_k + \boldsymbol{r}_i) + \mu_t(\boldsymbol{p}_k)\right)^2\right]^{\frac{1}{2}} + \left|\lambda_d \cdot \|\boldsymbol{q}_{k,m} - \boldsymbol{p}_k\|_{1}$$

$$\frac{r_{10}}{r_9 r_5 r_{11}}$$
Weighted SSD with local mean compensation
Regularization term

The number of examples M is optimized for every region of 64 x 64 pels.

Adaptive prediction

- DDI Research
- N kinds of affine predictors (i.e. linear + constant terms) are trained pel-bypel by the weighted least-square method.
 - Predictors refer pels in the current frame and the previous frame simultaneously.

Adaptive prediction

• We use N = 25 kinds of predictors for each pel.

• Each predictor has unique arrangement of reference pels.

Adaptive prediction

- DDI Research
- N kinds of affine predictors (i.e. linear + constant terms) are trained pel-bypel by the weighted least-square method.
 - Predictors refer pels in the current frame and the previous frame simultaneously.

Center position $f_{k,m}$ and reliability metric $d_{k,m}$ for each gaussian are given as the predicted value and the training error, respectively

• Center position $f_{k,m}$: Predicted value.

Number of reference pels

$$f_{k,M+n} = b_{n,0} + \sum_{l=1}^{L_n} b_{n,l} \cdot f_t(\boldsymbol{p}_k + \boldsymbol{v}_{n,l}) + \sum_{l=1}^{L'_n} b_{n,L_n+l} \cdot f_{t-1}\left(\boldsymbol{p}_k + \boldsymbol{m}\boldsymbol{v}_k + \boldsymbol{v'}_{n,l}\right)$$
Arrangement of reference pels

• Reliability metric $d_{k,m}$: Training error.

$$d_{k,M+n} = \left(\sum_{p_i \in T} \left(\left(f_t(p_i) - \widehat{f}_t(p_i, n) \right)^2 / \sigma_{n,i}^2 \right) / \sum_{p_i \in T} \left(1 / \sigma_{n,i}^2 \right) \right)^{\frac{1}{2}}$$

Squared training prediction error by predictor n

Squared error between neighboring pels of p_k and p_i

Probability Modeling

- GMM is defined by center positions $F_k = \{f_{k,m}\}$, reliability metrics $D_k = \{d_{k,m}\}$, and local feature $u_k = \{u_{k,m}\}$ (m = 1, ..., M + N).
 - { $f_{k,m}$, $d_{k,m}$, $u_{k,m}$ | m = 1, ..., M} come from example search.
 - { $f_{k,m}$, $d_{k,m}$, $u_{k,m}$ | m = M + 1, ..., M + N} come from adaptive prediction.
 - u_k is local average of bitrates in the causal area and used for context modeling.
- Shape of the probability model is controllable by model parameters a_0, \dots, a_3 .

Probability Optimization

- Model parameters a₀, ..., a₃ and the number of examples M are optimized to minimize bitrate in every region of 64 x 64 pels.
 - a_0, \ldots, a_3 are optimized by non-linear optimization technique (the quasi-Newton method).
 - Optimal setting of $M(= 0 \sim 31)$ is chosen in the optimization process.
 - The number of predictors N (= 25) is fixed. Optimization of N is a future task.
- a_0, \dots, a_3 and M are sent to a decoder by fixed-length coding.

Test sequences

• JVET CTC Class B, C, D, and E sequences.

- Align with Low-Delay P condition.
- Converted from 10 bits to 8 bits by 2 bits right shift.
- Only luma signal is tested.
- The first 15 and 30 frames are used for Class B and the other classes, respectively.
 - Due to the long processing time of the proposed method.
- Comparison with lossless mode of HEVC RExt and VVC
 - HEVC RExt : HM 16.20
 - VVC : VTM 8.2
 - The number of reference pictures is restricted to 1 for both HM and VTM.

JVET Test sequences

Test sequences

• JVET CTC Class B, C, D, and E sequences.

- Align with Low-Delay P condition.
- Converted from 10 bits to 8 bits by 2 bits right shift.
- Only luma signal is tested.
- The first 15 and 30 frames are used for Class B and the other classes, respectively.
 - Due to the long processing time of the proposed method.
- Comparison with lossless mode of HEVC RExt and VVC
 - HEVC RExt : HM 16.20
 - VVC : VTM 8.2
 - The number of reference pictures is restricted to 1 for both HM and VTM.

Results

- Proposed method achieves about 9% and 5% better coding rates than HEVC RExt and VVC, respectively.
- Over 13% bitrate reductions from HEVC RExt are observed for RaceHorses (Class C) and all of Class E sequences.

- Weakness of the proposed method is its processing time.
 - Our implementation has not yet been tuned for the processing time.

1		<u> </u>	× 1 /	
Test sequences		Proposed	HEVC RExt	VVC
MarketPlace	Class B (1920x1080)	3.229	3.675	3.532
RitualDance		1.612	2.036	1.940
Cactus		3.814	4.120	3.946
BasketballDrive		3.473	3.785	3.602
BQTerrace		3.647	3.879	3.749
BasketballDrill	Class C (832x480)	2.866	3.157	3.039
BQMall		3.404	3.660	3.505
PartyScene		3.828	3.973	3.794
RaceHorses		3.329	3.902	3.793
BasketballPass	Class D (416x240)	2.068	2.182	2.114
BQSquare		3.459	3.703	3.426
BlowingBubbles		3.844	3.889	3.767
RaceHorses		3.329	3.658	3.571
FourPeople	Class E (1280x720)	2.508	2.902	2.768
Johnny		2.500	2.882	2.771
KristenAndSara		2.376	2.741	2.618
Average		3.080	3.384	3.246
Bitrate reduction (vs HEVC RExt)		-8.97%	0.00%	-4.07%

Comparison of coding rates (bits/pel).

Proposed method

- Proposed method estimates probability of pel values directly with multi-peaked Gaussian mixture model (GMM) pel-by-pel.
- Center position $f_{k,m}$ and reliability $d_{k,m}$ (related to variance) of each Gaussian are estimated by example search and adaptive prediction.
- Model parameters of GMM $a_0, ..., a_3$ and the number of examples *M* are optimized to minimize bitrate in every region of 64 x 64 pels.
- The proposed method achieves better bitrate in comparison with VVC and HEVC lossless mode.
- Future works
 - Reducing the processing time.
 - Adaptive prediction and optimization waste the most part of encoding time.
 - Adaptive setting of the number of predictor *N*.
 - It might be effective for both improving coding performance and reducing processing time.

This work was supported by Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).